
Scalable High-Speed Prefix Matching

Marcel Waldvogel
Washington University in St. Louis
and
George Varghese
University of California, San Diego
and
Jon Turner
Washington University in St. Louis
and
Bernhard Plattner
ETH Zürich

Findingthelongestmatching prefix from adatabaseof keywordsisanold problem with anumber of applications,
ranging from dictionary searches to advanced memory management to computational geometry. But perhaps
today’s most frequent best matching prefix lookupsoccur in the Internet, whenforwarding packetsfrom router
to router. Internet traffic volume and link speeds arerapidly increasing; at the sametime, an increasing user
population is increasing the size of routing tables against which packets mustbe matched. Both factors make
routerprefix matchingextremely performancecritical.

In this paper, we introducea taxonomyfor prefix matching technologies, which weuseasabasisfor describ-
ing,categorizing,andcomparing existing approaches.Wethenpresentin detail a fastschemeusingbinarysearch
over hashtables,which is especially suitedfor matching longaddresses,such asthe128bit addressesproposed
for usein thenext generation Internet Protocol, IPv6. We also present optimizations thatexploit thestructureof
existingdatabases to further improveaccess time andreducestoragespace.

CategoriesandSubject Descriptors:C.2.6[Computer-Communication Networks]: Internetworking—Routers;
E.2 [Data StorageRepresentations]: Hash-table representations;F.2.2 [Analysisof Algorithms and Problem
Complexity]: Nonnumerical AlgorithmsandProblems—Patternmatching

General Terms:Algorithms,Performance

Additional KeyWordsandPhrases:collision resolution, forwarding lookups,high-speednetworking

Thework of Marcel Waldvogel wassupported in part by KTI grant 3221.1. Thework of GeorgeVarghese was
supported in part by anONR YoungInvestigator Award andNSFgrantsNCR-940997andNCR-9628218.
Partsof thispaperwerepresentedin ACM SIGCOMM ’97 [Waldvogel et al. 1997].
Permissionto makedigital or hard copiesof part or all of this work for personalor classroomuseis grantedwith-
out feeprovided that copiesarenot madeor distributedfor profit or direct commercial advantageandthatcopies
show this notice on thefirst page or initial screen of a display alongwith the full citation. Copyrightsfor com-
ponentsof thiswork owned by others thanACM must behonored. Abstractingwith credit is permitted.To copy
otherwise,to republish,to poston servers, to redistribute to lists, or to useany componentof this work in other
works, requiresprior specific permission and/or a fee. Permissions may be requested from Publications Dept,
ACM Inc.,1515Broadway, New York, NY 10036USA, fax +1 (212)869-0481,orpermissions@acm.org.

2 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

1. INTRODUCTION

The Internet is becoming ubiquitous: everyone wantsto join in. Since the advent of the
World Wide Web, the number of users, hosts, domains, andnetworks connectedto the
Internet seems to be growing explosively. Not surprisingly, network traffic is doubling
every few months.Theproli feration of multimedia networking applications(e.g., Napster)
and devices(e.g., IP phones)is expectedto give traffic another major boost.

The increasingtraffic demand requires four key factors to keep paceif the Internet is
to continue to provide good service: link speeds,router datathroughput, packet forward-
ing rates, andquick adaptation to routing changes. Readily available solutions exist for
the first two factors: for example, fiber-optic cables canprovide fasterlinks and switch-
ing technology canbe usedto move packets from the input interfaceof a router to the
corresponding output interface at multi-gigabit speeds[Partridge et al. 1998]. Our paper
dealswith theother two factors: forwarding packetsathigh speedswhile still allowing for
frequentupdatesto therouting table.

A major stepin packet forwarding is to lookup thedestination address(of anincoming
packet) in the routing database. While thereareotherchores, such asupdatingTTL fields,
thesearecomputationally inexpensivecomparedto themajor task of address lookup. Data
link Bridgeshavebeendoing addresslookupsat100Mbps[Spinney 1995] for many years.
However, bridgesonly do exact matching on thedestination (MAC) address,while Inter-
net routershave to searchtheir databasefor the longest prefix matching a destination IP
address. Thus, standard techniques for exact matching, suchas perfect hashing, binary
search, andstandard Content AddressableMemories (CAM) cannot directly be used for
Internetaddresslookups. Also, themostwidely usedalgorithm for IP lookups,BSDPatri-
cia Tries[Sklower1993], haspoor performance.

Prefixmatching in Internet routerswasintroducedin theearly 1990s,whenit wasfore-
seenthat the number of endpoints and the amount of routing information would grow
enormously. At that time,only addressclasses A, B, and C existed,giving individual sites
either 24, 16, and 8 bitsof address space,allowing up to 16 Mil lion, 65,534, and 254 host
addresses,respectively. Thesizeof thenetwork could easilybededucedfrom thefirst few
address bits, making hashing a popular technique. The limited granularity turned out to
beextremely wasteful on addressspace.To make betteruseof this scarceresource,espe-
cially theclassB addresses, bundles of classC networks were given out insteadof classB
addresses.This would have resulted in massive growth of routing table entriesover time.
Therefore, ClasslessInter-Domain Routing (CIDR) [Fuller et al. 1993] was introduced,
which allowed for aggregation of networks in arbitrary powersof two to reduce routing
tableentries.With thisaggregation, it wasno longerpossibleto identify thenumberof bits
relevant for the forwarding decisionfrom the address itself, but required a prefix match,
wherethe number of relevant bits wasonly known whenthe matching entryhadalready
beenfound in thedatabase.

To achieve maximum routing tablespacereduction, aggregation is done aggressively.
Supposeall thesubnetsin abig network haveidentical routing information exceptfor asin-
gle, small subnet with dif ferent information. Insteadof having multiple routing entriesfor
eachsubnet in thelarge network, just two entries are needed: one for the overall network,
and one entry showing the exception for the small subnet. Now thereare two matches
for packets addressed to the exceptional subnet. Clearly, the exception entry should get
preference there. This is achievedby preferring the morespecific entry, resultingin a Best

Scalable High-Speed Prefix Matching 3

Matching Prefix (BMP) operation. In summary, CIDR tradedoff better usageof the lim-
ited IP addressspace and a reduction in routing information for a more complex lookup
scheme.

Theupshot is thattodayanIProuter’sdatabaseconsistsof anumberof addressprefixes.
Whenan IP routerreceivesa packet, it must computewhich of the prefixesin its database
has the longestmatch whencomparedto the destination addressin thepacket. The packet
is thenforwardedto theoutput link associatedwith that prefix, directedto the next router
or the destination host. For example, a forwarding database may have the prefixes

��������������
,
�
	�� ������� ����

and
����� ������� ��� ���������

, with
�

meaning all further bits
areunspecified.An addresswhosefirst 12 bits are

������� ����� ���
haslongestmatching

prefix
� �

. On the other hand, an address whose first 12 bits are
������� ��� �������

has
longest matching prefix

���
.

The useof bestmatching prefix in forwarding hasallowed IP routersto accommodate
various levelsof address hierarchies,andhas allowedpartsof thenetwork to beoblivious
of detailsin otherparts. Giventhatbestmatching prefix forwarding is necessaryfor hier-
archies,and hashing is a natural solution for exactmatching, a natural question is: “Why
can’t we modify hashing to do best matching prefix?” However, for several years now, it
wasconsiderednot to be “apparenthow to accommodatehierarchieswhile usinghashing,
other thanrehashing for eachlevel of hierarchy possible”[Sklower1993].

Our paperdescribesa novel algorithmic solution to longest prefix match, using binary
searchover hash tables organizedby the length of the prefix. Our solution requires a
worst caseof ������� hashlookups, with � being the length of theaddressin bits. Thus,
for thecurrent Internetprotocol suite(IPv4) with 32 bit addresses,we needat most5 hash
lookups.For theupcoming IPversion 6 (IPv6) with 128bit addresses,wecandolookupin
atmost7 steps, asopposedto longer for current algorithms(seeSection 2), giving anorder
of magnitudeperformanceimprovement. Usingperfect hashing [Fredmanet al. 1984], we
canlookup 128 bit IP addressesin at most7 memory accesses. This is significant because
on current processors, the calculation of a hashfunction is usuall y much cheaper thanan
off-chip memory access.

In addition, we useseveral optimizations to significantly reduce the average number
of hashesneeded. For example, our analysisof the largest IPv4 forwarding tablesfrom
Internet backbone routersshow that the majority of addressescan be found with at most
two hashes. Also, all available databasesallowed us to reduce the worst case to four
accesses.In both cases,the first hashcan be replacedby asimple index tablelookup.

The restof the paper is organized asfollows. Section2 introducesour taxonomy and
comparesexisting approachesto IP lookups. Section 3 describesour basic schemein ase-
riesof refinements that culminate in the basic binary search scheme. Section 4 focuseson
aseriesof importantoptimizations to thebasicschemethat improveaverageperformance.
Section5 describes ways how to build the appropriate structures and perform dynamic
insertions and deletions, Section 6 introducesprefix partitioning to improve worst-case
insertion anddeletion time, andSection7 explains fast hashing techniques. Section 8 de-
scribesperformancemeasurementsusing our schemefor IPv4 addresses,andperformance
projectionsfor IPv6addresses.We conclude in Section 9 by assessing thetheoretical and
practicalcontributionsof this paper.

4 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

2. COMPARISON OF EXISTING ALGORITHMS

As several algorithmsfor efficient prefix matching lookupshave appearedin theliterature
over the last few years (including a recent paper [Srinivasanand Varghese 1999] in ACM
TOCS), we feel that it is necessary to structure the presentation of relatedwork using
a taxonomy. Our classification goes beyond the lookup taxonomy recently introduced
in [Ruiz-Sánchezet al. 2001]. However, the paper [Ruiz-Sánchezet al. 2001] should be
consultedfor a more in-depth discussion and comparisonof some of the other popular
schemes.

0 1

P
refix Length

Value

Prefix Node

Internal Node

Fig. 1. PrefixMatching Overview

Traditionally, prefix matching hasbeendone on tries [Gwehenberger 1968; Morrison
1968], with bit-wise (binary) triesbeing theforemost representative. Figure 1 shows such
atrie. To find thelongest prefix matching agiven searchstring, thetreeis traversedstarting
attheroot (topmost)node. Depending on thevalueof thenext bit in thesearchstring,either
theleft or right link is followed,always remembering the mostrecent prefix node visited.
Whenthesearchstring is exhaustedor anonexistent link isselected,therememberedprefix
nodeis returned asthe bestmatch.

Thus a trie hastwo aspects (Figure 1) that we baseour taxonomy on: the first is the
verticalaspect thatsignifiesprefix length (aswe travel vertically down thetrie theprefixes
we encounterare correspondingly longer); thesecond horizontal aspectis theprefix value
(the value of the bit string representing the prefix, prefixesof the samelength aresorted
from left to right). Our simple insight, which is thebasisof our taxonomy, is that existing
schemeseither do linear or binary search in either theprefix length or value dimensions.
The schemescanalsobeaugmentedusingparallelism, caching, andcompression.

2.1 Taxonomy

Thus our taxonomy is organized along four dimensions. The two major dimensions are
definedby themainsearchspacein which to operate (seeFigure1) andthebasicsearch
algorithm used. The minor dimensions, orthogonal and largely independent of the main
dimensions, identify parallelism,memory optimizationsand compression, and the useof
caching.

Search space: Search in prefix length or value space
Search algorithm: Linear or binary search
Parallelism: Serialized,pipelined, or parallel execution
Data Compaction and caching: Optional useof compression and caching.

Scalable High-Speed Prefix Matching 5

2.2 Linear Search on Prefix Lengths

The basictrie scheme describedabove is an example of linear searchin the prefix length
spacewithout compression. This is becausetrie traversalexploresprefixes in increasing
order of lengths. Many schemes have extended this idea by reducing the trie memory
footprint or thenumber of trienodesaccessedduring search.

The most commonly available IP lookup implementation is found in the BSD Unix
kernel, andis a radix trie implementation [Sklower 1993]. It usesa path-compressedtrie,
wherenon-branching internal nodesare eliminated, improving memory utilization. The
actual implementation usespotentially expensive backtracking. Even an efficient search
implementationwould require ������� node accesses, where � is thelength of anaddress.
Thus,search implementation requiresup to 32 or 128 costly external memory accesses, for
IPv4 or IPv6, respectively. Therefore, thesealgorithmsarenot directly usedin high-speed
networking equipment.Unlikemostotheralgorithms,updatesto theseunibit triesarevery
fastand make themideal candidatesfor datastructureswith ahigh update/searchratio.

Path compression is most useful when compressinglong non-branching chainsof in-
ternal nodes,which occur in sparselypopulatedareasof the trie. LC-Tries [Andersson
and Nilsson 1994; Nilsson and Karlsson1999] extend this notion by introducing level
compression, where, for any givenprefix length, denseareaswith a common ancestor are
aggregatedinto a single "! -ary branching node. This schememaintainsa good balanceof
memory usage,searchspeed,andupdate times.

For applications where search speed is much more important than update speed or
worst-casememory consumption, such asfor Internet forwarding lookups, more aggres-
sive search time optimization is required. To reducethenumber of levels that need to be
touched,ControlledPrefixExpansion[SrinivasanandVarghese1999] selectsasmall num-
ber of prefix lengthsto besearched. All databaseentriesthat arenot alreadyof oneof these
lengths,areexpandedinto multiple entriesof thenext higher selectedlength. Depending
on the length of the “strides” # between the selected lengths and the prefix length distri-
bution, this canleadto an expansion of up to �$&% � . Selectingthe stridesusing dynamic
programming techniques resultsin minimal expansion whenused with current IP routing
tables. Despiteexpansion, this search schemeis still linear in the prefix length because
expansiononly providesa constant factor improvement.

Prefix expansionis usedgenerously in the schemedevelopedby Gupta et al. [Gupta
et al. 1998] to reducememory accesseseven further. In the DIR-24-8 schemepresented
there,all prefixesareexpandedto at least24 bits (the Internet backbone forwarding tables
containalmostnoprefixeslongerthan24bits). A typical lookupwill thenjustusethemost
significant24 bitsof theaddressasanindex into the16M entriesof the table, reducing the
expectednumberof memory accessesto almostone.

A differentapproach waschosenby Degermark et al. [Degermark et al. 1997]. By first
expanding to a completetrie andthenusingbit vectors and mapping tables, they are able
to represent routing tablesof up to 40,000 entries in around 150KBytes. This compact
representation allows the data to be kept in on-chip caches, which provide much better
performancethanstandardoff-chipmemory. A further approachto trie compressionusing
bitmapsis described in [Eatherton 1999].

Crescenzi et al. [Crescenzi et al. 1999] present another compressed trie lookup scheme.
They first fully expand the trie, so thatall leaf nodesare at length � . Then, they divide
thetreeinto multiple subtreesof identical size.Theseslicesarethenput side-by-side,say,

6 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

in columns. All the neighboring identical rows are thencollapsed, and a single table is
createdto mapfrom the original row number to thenew, compressedrow number. Unlike
thepreviousapproach [Degermarketal. 1997], thisdoesnot result in asmallenough table
to fit into typical on-chip caches,yet it guaranteesthatall lookups canbedone in exactly
3 indexedmemory lookups.

McAuley and Francis [McAuley and Francis1993] use standard (“binary”) content-
addressable memories (CAMs) to quickly search the different prefix lengths. The first
solution discussedrequiresmultiple passesthrough, starting with the longestprefix. This
searchorder waschosento be ableto terminate after the first match. The other solution
is to have multiple CAMs queried in parallel. CAMs are generally much slower thancon-
ventional memory anddo not provide enough entries for backbone routersarestill rare,
where in the nearfuture more than 100,000 forwarding entries will be required. Never-
theless, CAMs arepopular in edge routers,which typically only have up to hundredsof
forwarding entries.

2.3 Binary Search on Prefix Lengths

Theprior work closesttobinarysearchonprefix lengthsoccursin computational geometry.
De Berg et al. [deBerg et al. 1995] describe a schemefor one-dimensional point location
basedon stratified trees [van EmdeBoas1975; van Emde Boaset al. 1977]. A stratified
treeis probably bestdescribed asa self-similar tree,whereeachnode internally hasthe
samestructure asthe overall tree. Theactualsearchis not performed on a prefix trie, but
on a balancedinterval tree. Theschemedoesnot support overlapping regions,which are
required to implement prefix lookups. While this could be resolved in a preprocessing
step,it would degrade the incrementalupdatetime to �'�)(*� . Also unlike the algorithm
introducedin Section 3, it cannot takeadvantageof additional structure in therouting table
(Section 4).

2.4 Linear Search of Values

Pure linear valuesearch is only reasonable for very small tables.But a hardware-parallel
versionusing ternary CAMs has become attractive in the recentyears. Ternary CAMs,
unlike the binary CAMs above, which require multiple stagesor multiple CAMs, have a
mask associatedwith every entry. This mask is usedto describe which bits of the entry
should be compared to the query key, allowing for one-passprefix matching. Due to the
higher per-entry hardwareoverhead, ternary CAMs typically provide for only about half
theentriesascomparable binary CAMs. Also, asmultiple entries may matchfor a single
searchkey, it becomesnecessary to prioritize entries. As priorities are typically associ-
atedwith an internal memory address, inserting a new entry canpotentially causea large
number of other entries to be shifted around. Shah and Gupta [Shahand Gupta 2000]
presentanalgorithmic solution to minimize theseshifts while Kobayashi etal. [Kobayashi
et al. 2000] modify the CAM itself to return only the longestmatch with littl e hardware
overhead.

2.5 Binary Search of Values

The useof binary searchon the value spacewasoriginally proposedby Butler Lampson
and described in [Perlman 1992]; additional improvementswereproposedin [Lampson
et al. 1998]. The key ideasareto represent each prefix as a range using two values(the
lowest andhighestvaluesin the range), to preprocessthetableto associatematching pre-

Scalable High-Speed Prefix Matching 7

fixeswith thesevalues,andthento doordinary binary search on thesevalues. Theresulting
searchtime is +,�-��� 	 �(/. searchsteps,with (being the number of routing tableentries.
With current routing tablesizes, thisgetscloseto theexpected numberof memory accesses
for unibit tries,which is fairly slow. However, lookup time canbe reducedusing B-trees
insteadof binary treesandby using aninitial memory lookup [Lampsonet al. 1998].

2.6 Parallelism, Data Compaction, and Caches

The minor dimensions described above in our taxonomy can be applied to all the major
schemes. Almost every lookup algorithm canbe pipelined. Also, almost all algorithms
lend themselvesto more compressedrepresentations of their datastructures; however, in
[Degermark et al. 1997; Crescenzi et al. 1999; Eatherton 1999], the main novelty is the
manner in which amultibit trie is compressedwhile retaining fastlookup times.

In addition, all of the lookup schemescantake advantage of an added lookup cache,
which doesnot store the prefixes matched,but insteadstoresrecent lookup keys, asexact
matchesare generally much simpler and fasterto implement. Unfortunately, with the
growth of theInternet,accesslocality in packetstreamsseemsto decrease,requiring larger
and largercachesto achieve similar hit rates.In 1987, Feldmeier [Feldmeier1988] found
that acachefor themostrecent 9 destinationaddressesalready provided for a90%hit rate.
8 years later, Partridge [Partridge 1996] did a similar study, wherecacheswith close to
5000 entrieswererequired to achieve the same hit rate. We expect this trend to continue
and potentially to become evenmorepronounced.

2.7 Protocol Based Solutions

Finally, (leaving behind our taxonomy) we notethat oneway to finessetheproblemsof IP
lookup is to have extra information sent along with thepacket to simplify or even totally
get rid of IP lookups at routers.Two major proposalsalong theselineswere IP Switching
[Newmanet al. 1997] and TagSwitching [Rekhteret al. 1997], both now mostly replaced
by Multi-Protocol Label Switching (MPLS [Rosenet al. 2001]. All threeschemesrequire
large, contiguous parts of the network to adopt their protocol changes before they will
show a major improvement. The speedup is achieved by adding information on the des-
tination to every IP packet, a technique first described by Chandranmenon and Varghese
[ChandranmenonandVarghese1995]. This switching information is included by adding a
“label” to eachpacket, a small integer that allows direct lookup in the router’s forwarding
table.

Neither scheme can completely avoid ordinary IP lookups. All schemesrequire the
ingressrouter(to theportionsof thenetwork implementing theirprotocol) to perform afull
routing decision. In their basicform, both systemspotentially require theboundary routers
betweenautonomous systems(e.g., betweena company andits ISP or betweenISPs) to
perform the full forwarding decision again, becauseof trust issues,scarce resources,or
differentviewsof thenetwork. Labelswill becomescarceresources,of whichonly afinite
amount exist. Thus towards the backbone, they need to be aggregated; away from the
backbone, they needto be separatedagain.

2.8 Summary of Existing Work

Thereare two basicsolutionsfor the prefix matching problem causedby Internetgrowth:
(1) making lookupsfasteror (2) reducingthenumberof lookupsusingcaching or protocol
modifications. As seenabove, the latter mechanisms are not able to completely avoid

8 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

lookups,but only reduce themto either fewer routers (labelswitching) or fewerperrouter
(caching). The advantage of using caches will disappear in a few years, asInternet data
rates aregrowing much fasterthanhardwarespeeds, to the point that all lookup memory
will haveto usethe fastest available memory (i.e.,SRAM of thekind that is currentlyused
by cachememory).

Themost popularly deployedschemes todayarebasedon linearsearchof prefix lengths
using multibit or unibit triestogether with high speedmemoriesandpipelining. However,
thesealgorithmsdonot scalewell to longernext generation IP addresses.Lookupschemes
basedonunibit triesand binary searchare(currently) tooslow and do not scalewell; CAM
solutionsare relatively expensive and are hardto field upgrade;

In summary, all existing schemeshaveproblemsof eitherperformance, scalability, gen-
erali ty, or cost, especially when addressesextend beyond the current 32 bits. We now
describe a lookup schemethat hasgood performance, is scalableto large addresses, and
doesnot require protocol changes.Our schemeallowsa cheap, fastsoftwareimplementa-
tion, and is also amenable to hardware implementations.

3. BASIC BINARY SEARCH SCHEME

Our basic algorithm is based on three significant ideas: First, we use hashing to check
whetheran address 0 matchesany prefix of a particular length; second, we use binary
searchto reducenumberof searchesfrom linearto logarithmic; third, weusepre-computation
to prevent backtracking in caseof failures in the binary search of a range. Rather than
presentthe final solution directly, we will gradually refinethese ideasin Section 3.1, Sec-
tion 3.2, and Section 3.4 to arrive at a working basic scheme. We describe further opti-
mizationsto thebasicschemein thenext section. As therearemultiple ways to look at the
data structure, whenever possiblewe will usethe terms“shorter” and“longer” to signify
selectingshorteror longerprefixes.

3.1 Linear Search of Hash Tables

Our point of departure is a simple scheme that doeslinearsearch of hash tablesorganized
by prefix lengths. We will improve this schemeshortly to do binary search on the hash
tables.

Length Hash

5

7

12

01010

0101011
0110110

011011010101

Hash tables

Fig. 2. HashTables for each possibleprefix length

The ideais to look for all prefixesof a certainlength 1 using hashing anduse multiple
hashes to find the bestmatching prefix, starting with the largest value of 1 and working
backwards. Thuswe start by dividing the database of prefixesaccording to lengths. As-
suming aparticularly tiny routing tablewith four prefixesof length 5, 7, 7, and12, respec-
tively, eachof them would be stored in the hash tablefor its length (Figure 2). So each
setof prefixes of distinct length is organizedasa hashtable. If we have a sortedarray 2

Scalable High-Speed Prefix Matching 9

corresponding to the distinct lengths, we only have 3 entriesin thearray, with a pointer to
thelongestlength hash tablein the lastentry of thearray.

To search for destination address 0 , wesimply start with the longestlength hashtable 1
(i.e. 12 in the example), and extract thefirst 1 bits of 0 anddo a search in thehashtable
for length 1 entries.If we succeed,we have found the longestmatchandthusour BMP; if
not, we look at thefirst length smallerthan 1 , say 143 (this is easy to find if wehavethearray2 by simply indexing onepositionlessthantheposition of 1), and continuing the search.

3.2 Binary Search of Hash Tables

The previous scheme essentiallydoes (in the worst case) linear search among all dis-
tinct string lengths. Linearsearch requires ������� time (more precisely, �'�5�76�8 $)9 � , where� 6:8 $;9�< � is the numberof distinct lengthsin thedatabase.)

A bettersearch strategy is to usebinary search on the array 2 to cut down thenumber
of hashes to �'�=�-����� 6:8 $�9 � . However, for binary search to make its branching decision, it
requiresthe resultof an ordered comparison, returning whether the probedentry is “less
than,” “equal,” or “greaterthan” our search key. As we are dealing with prefix lengths,
these map to indications to look at “shorter,” “same length,” or “longer,” respectively.
Whendealing with hashlookups, orderedcomparison doesseemimpossible: either there
is ahit (thentheentry found equalsthehash key) or thereis amissandthusno comparison
possible.

Let’s look at theproblemfrom the otherside: In ordinary binary search, “equal” indi-
catesthatwehavefoundthematching entry and can terminatethesearch. Whensearching
among prefix lengths,having foundamatching entry doesnot yet imply that this is alsothe
best entry. So clearly, whenwehave foundamatch, weneedto continuesearching among
the longer prefixes. How doesthis observation help? It signifies, that whenan entry has
beenfound, weshould remember it asa potential candidatesolution, but continue looking
for longerprefixes. The only other informationthat we canget from thehash lookup is a
miss.Due to limited choice,westart taking hashmissesasanindication to inspectshorter
prefixes. This resultsin thepseudo code givenin Figure 3.

Function NaiveBinarySearch(>) (* search for address > *)
Initializesearch range? to cover thewholearray @ ;
While ? is notasingleentry do

Let A correspond to themiddlelevel in range ? ;
Extract themostsignificant @CB A�DFE GIH)JLK:MON bitsof > into >QP ;
Search(> P , @RB A-DFE NLS:TUN); (* searchhash table for > P *)
If foundthenset? := longer half of ? (* longerprefixes*)

Elseset? := shorterhalf of ? ; (*shorterprefixes*)
Endif

Endwhile

Fig. 3. NäıveBinary Search

Figure 4 illustratesbinary search over 7 prefix lengths. Thetreeon thetop indicatesthe
binary searchbranching thatis to be taken: Starting at the root (length 4), the currenthash
table is probedfor thekey shortenedto thecurrentprefix length. If thekey is found, longer
prefixesareselected, otherwiseshorter prefixesaretestednext. As anexample, we try to
find the longestprefix for “1100100.” We find a matchat length 4 (1100*) , thus taking

10 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

(a) Binary search tree

1

2

3

4

6

5 7

0*

(b) Hash Tables

1111010

11001111100* 110011*

111100*

bold: Prefixes italic: Markers

Fig. 4. BinarySearch: FirstAttempt

the branch towards longer prefixes,namely length 6. Looking for “110010*” therefails.
Therefore, we look for shorter prefixesat length 5, and missagain. The bestmatchfound
during our search is “1100*,” which is correct.

Trying to locateaddress“1111000” fails miserably: We missat 4, go shorter to 2, miss
again, and have no luck at length 1 either. The correct match would have been “111100*”
at length 6. Unlike the previousexample, there hadbeen no guiding prefixesin this case.
To make sure that such guiding prefixesexist, we insert additional branching information,
called markers. Thesemarkers look like prefixes, except that they have no associated
informationfields, their sheerpresenceis all we want for now.

But wheredoweneedmarkers,and how many arethere?Näıvely, it seemsthatfor every
entry, there would be a marker at all other prefix lengths,leading to a massive increase in
thesizeof thehashtables. Luckily, markersdonot need to beplacedat all levels.Figure5
again shows a binary search tree. At eachnode, a branching decision is made, going to
either the shorter or longer subtree, until the correctentry or a leaf node is met. Clearly,
at most �-���V� internal nodeswil l be traversedon any search, resultingin at most �����V�
branching decisions. Also, any search that will end up at a given node only hasa single
path to choose from, eliminatingtheneedto placemarkersat any otherlevels.

3.3 Problems with Backtracking

Unfortunately, thealgorithm shown in Figure3 is not correct asit standsand doesnot take
logarithmic time if fixednäıvely. Theproblem is thatwhile markersaregood things(they
leadto potentially better, longer prefixesin the table), can alsocause the searchto follow
falseleads which may fail. In case of failure, we would have to modify the binary search
(for correctness)to backtrack and search the shorter prefixesof W again. Sucha näıve
modification canleadusback to linear timesearch. An example will clarify this.

First consider the prefixes
�X���

,
�
	'� ���

,
���/� ��

(Figure 6). As discussedabove,
weadd amarker to themiddle tablesothatthemiddle hashtablecontains

���
(arealprefix)

and
�

(a marker pointing down to
���

). Now consider a search for
���

. We startat the
middlehashtableandget ahit; thuswesearch thethird hashtablefor

���
andfail. But the

correct bestmatching prefix is at thefirst level hash table— i.e.,
� �

. Themarker indicating
that there will be longer prefixes,indispensable to find

� �
, wasmisleading in this case;so

Scalable High-Speed Prefix Matching 11

(a) Binary search tree

1

2

3

4

6

5 7

0* 1111*

(b) Hash Tables including Markers

1111010

11001111100* 110011*

111100*

111101*

bold: Prefixes italic: Markers

Fig. 5. ImprovedBranching Decisionsdueto Markers

1

2

3

1*

00*

111*11*

Fig. 6. MisleadingMarkers

apparently, we have to go backandsearch the shorterhalf of therange.
The factthat eachentry contributes at most �,��� 	 � markers may causesome readersto

suspect that the worst casewith backtracking is limited to �'�Y����� 	 ��� . This is incorrect.
The worst caseis �'�)��� . Theworst-caseexample for say � bits is asfollows: we have a
prefix

� 8 of length Z , for
 < Z\[]� that contains all 0s. In addition we have theprefix ^

whosefirst �`_
bits areall zeroes, but whoselast bit is a

. If we search for the � bit

address containing all zeroesthenwe canshow that binary searchwith backtracking will
take �'�)��� timeand visit every level in the table. (Theproblem is thatevery level contains
a falsemarker thatindicates the presenceof something betterin the longer section.)

3.4 Pre-computation to Avoid Backtracking

We use pre-computationto avoid backtracking whenwe shrink thecurrentrange W to the
longer half of W (which happens when we find a marker at themid point of W). Suppose
every marker node a is a record that containsavariableM.bmp, which is the valueof the
best matching prefix of themarker a .1 M.bmpcanbeprecomputed whenthemarker a is
insertedinto itshash table.Now, when wefind a at themid point of W , we indeedsearch
the longer half, but we also rememberthe value of M.bmp asthe current bestmatching
prefix. Now if the longer half of W fails to produce anything interesting, we neednot

b
This can eitherbea pointer to thebest matching node, or a copy of its value. The latter is typically preferred,

asthe information stored is often comparable to the size of a pointer. Very often, the BMP is an indexinto a
next-hop table.

12 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

backtrack,becausetheresultsof the backtracking are already summarized in thevalueof
M.bmp. Thenew code is shown in Figure7.

Function BinarySearch(>) (* search for address> *)
Initializesearch range? to cover thewholearray @ ;
InitializeBMP foundso far to null string;
While ? is notempty do

Let A correspondto themiddle level in range ? ;
Extract thefirst L[i].len gthbits of > into > P ;c

:= Search(> P , L[i].hash); (* search hashfor > P *)
If
c

is nil Thenset ? := shorterhalf of ? ; (* not found*)
Else-if

c
is a prefixandnotamarker

Then BMP := M.bmp; break; (* exit loop *)
Else(*

c
is apuremarker, or marker andprefix *)

BMP := M.bmp; (* updatebestmatching prefix sofar *)? := longerhalf of ? ;
Endif

Endwhile

Fig. 7. Working Binary Search

The standard invariant for binary search when searching for key d is: “ d is in rangeW ”. We then shrink W while preserving this invariant. The invariant for this algorithm,
whensearching for key d is: “either (The BestMatching Prefixof d is BMP) or (There
is a longer matching prefix in W)”.

It is easy to see that initialization preservesthis invariant, and each of the searchcases
preserves this invariant (this can be establishedusing an inductive proof). Finally, the
invariant impliesthecorrectresultwhenthe rangeshrinks to 1. Thus the algorithm works
correctly; alsosinceit hasno backtracking, it takes ���F����� 	 � 6:8 $;9 � time.

4. REFINEMENTS TO BASIC SCHEME

Thebasicschemedescribedin Section3 takesjust 7 hashcomputations,in theworstcase,
for 128 bit IPv6 addresses.However, eachhashcomputation takesat leastone access to
memory; at gigabit speedseach memory accessis significant. Thus, in this section, we
explore a seriesof optimizations that exploit the deeperstructure inherent to the problem
to reducetheaveragenumberof hashcomputations.

4.1 Asymmetric Binary Search

We first describe a seriesof simple-mindedoptimizations. Our mainoptimization, mutat-
ing binary search, is describedin the next section. A reader cansafely skip to Section 4.2
on afirst reading.

The current algorithm is a fast, yet very general, BMP search engine. Usually, the
performanceof general algorithms can be improved by tailoring them to the particular
datasets they will be applied to. Figure 8 shows the prefix length distribution extracted
from forwarding table snapshots from five major backbone sites in January 1999 and, for
comparison, at Mae-Eastin December 1996 2. As canbe seen,the entriesaredistributed
over the different prefix lengths in an extremely uneven fashion. The peak at length 24

e
http://www.merit.edu/ipma/routing table/

Scalable High-Speed Prefix Matching 13

1

10

100

1000

10000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
ou

ntf

Prefix Length

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

Fig. 8. Histogramof BackbonePrefixLength Distributions(log scale)

Table 1. ForwardingTables: Total Prefixes,Distinct Lengths,andDistinct Lengthslonger than 16bit
Prefixes gih)j-kUl gmh5j=kUlFn bUo

AADS 24218 23 15
Mae-East 38031 24 16
Mae-West 23898 22 14
PAIX 5924 17 12
PacBell 22850 20 12
Mae-East1996 33199 23 15

dominateseverything by at leastafactorof ten, if weignorelength 24. Therearealsomore
than 100 timesasmany prefixesat length 24 thanatany prefix outsidetherange

qp\rsr&r �t .
This graphclearly showstheremnantsof theoriginal classA, B, and C networkswith local
maxima at lengths8, 16, and 24. This distribution pattern is retainedfor many yearsnow
and seems to be valid for all backbone routing tables,independent of their size (Mae-East
hasover38,000, while PAIX has less than6,000 entries).

Thesecharacteristicsvisibly cry for optimizations. Although we will quantify the po-
tential improvements usingthese forwarding tables, we believe that the optimizations in-
troducedbelow apply to any currentor future setof addresses.

As the first improvement, which hasalready beenmentioned and usedin the basic
scheme, the searchcanbelimited to thoseprefix lengthswhich do contain at leastoneen-
try, reducingtheworstcasenumberof hashesfrom �,��� 	 � (5 with � �vu) to �-��� 	 � 6:8 $�9
(t r,Xrqrsr t r p with � 6:8 $�9xwzy �{�| �t�} , according to Table1). Figure 9 applies this to Mae-
East’s 1996 table. While this numerically improves the worst case,it harms the average
performance,sincethe popular prefix lengths 8, 16, and 24 move to lessfavorable posi-
tions.

A more promising approach is to change the tree-shaped search pattern in the most
promising prefix length layers first, introducing asymmetry into the binary tree. While
thiswill improveaveragecaseperformance,introducingasymmetrieswill not improvethe
maximum treeheight; on the contrary, somesearches wil l make a few more steps, which
hasanegative impacton theworstcase.Giventhat routerscantemporarily buffer packets,
worst casetime is not as important asthe averagetime. Thesearchfor aBMP canonly be
terminatedearly if we have a“stop searchhere” (“terminal”) condition storedin thenode.
This condition is signalledby a node being a prefix but no marker (Figure7).

14 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3
4

1

30

26

22

18

14

10

6

2

28

20

12

4

24

16

8

32

28

24

21

18

15

12

9

30

27

23

20

17

14

11

8

29

22

16

10

26

19

13

Standard Binary Search Distinct Binary Search

Fig. 9. SearchTreesfor Standard andDistinct Binary Search

Average time depends heavily on the traffic pattern seenat that location. Optimizing
binary search treesaccording to usage patternis an old problem [Knuth 1998]. By opti-
mizing theaveragecase,somedatasetscould degeneratetowardslinearsearch(Figure10),
which is clearly undesirable.

To build a useful asymmetrical tree,we canrecursively split both the upper and lower
part of the binary search tree’scurrentnode’ssearch space,at a point selectedby aheuris-
tic weighting function. Two different weighting functionswith dif ferent goals(onestrictly
picking thelevel coveringmost addresses,theother maximizing theentrieswhile keeping
theworst casebound) areshown in Figure10, with coverageand average/worstcaseanaly-
sisfor both weighting functionsin Table2. As canbeseen, balancing givesfaster increases
after thesecond step,resulting in generally betterperformance than “narrow-minded” al-
gorithms.

26

20

12

9

24

15

10

19

17

14

18

16

8

13

11

21
22

27
28

30
32

23

21

19

17

13

8

32

28

26

22

18

15

12

30

27

20

14

29

24

16

10
9

11

Maximize Entries,
Keeping Balance

Maximize
Addresses Covered
(Usage Probability)

Fig. 10. Asymmetric Treesproducedby two Weighting Functions

Scalable High-Speed Prefix Matching 15

Table 2. Address(A) andPrefix(P) Count Coveragefor Asymmetric Trees
Steps Usage Balance

A P A% P%

1 43% 14% 43% 14%
2 83% 16% 46% 77%
3 88% 19% 88% 80%
4 93% 83% 95% 87%
5 97% 86% 100% 100%

Average 2.1 3.9 2.3 2.4
Worstcase 9 9 5 5

4.2 Mutating Binary Search

In this subsection, we further refine the basicbinary searchtree to change or mutate to
more specializedbinary treeseach time we encountera partial matchin some hash table.
Webelievethisa farmoreeffectiveoptimizationthantheuseof asymmetrical treesthough
thetwo ideascanbecombined.

Previously, we tried to improve search time based on analysis of prefix distributions
sorted by prefix lengths. The resultinghistogram (Figure 8) led us to propose asymmet-
rical binary search, which can improve average speed. More information about prefix
distributions canbe extracted by further dissecting the histogram: For eachpossible ~ bit
prefix, we could draw "� individual histograms with possibly fewer non-empty buckets,
thus reducing thedepth of the search tree.

Table 3. Histogramof theNumber of Distinct Prefix Lengths ���O� in the16bit Partitions

1 2 3 4 5 6 7 8 9
AADS 3467 740 474 287 195 62 11 2 1
Mae-East 2094 702 521 432 352 168 53 8 1
Mae-West 3881 730 454 308 158 70 17 3 —
PAIX 1471 317 139 56 41 31 1 — —
PacBell 3421 704 442 280 168 42 9 — —
Mae-East
1996 5051 547 383 273 166 87 27 3 —

Whenpartitioning according to 16 bit prefixes3, andcounting the number of distinct
prefix lengths in thepartitions, we discover anotherniceproperty of therouting data.We
recall the whole forwarding databases (Figure 8 and Table 1) showed up to 24 distinct
prefix lengthswith many bucketscontaining a significant number of entriesandup to 16
prefix lengthswith at least16 bits. Looking at thesliceddatain (Table3), none of these
partial histogramscontain more than9 distinct prefixeslengths; in fact, the vastmajority
only contain one prefix, which often happens to be in the 16 bit prefix length hash table
itself. This suggests that if we startwith 16 bits in the binary search and get a match,we

�
There is nothing magic about the16 bit level, otherthanit being a natural starting length for abinary search of

32bit IPv4addresses.

16 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

need only do binary search on a setof lengths that is much smaller thanthe 16 possible
lengthswewould have to search in näıve binary search.

In general, every matchin the binary search with somemarker � meansthat we need
only search among the set of prefixes for which � is a prefix. Thus, binary search on
prefix lengths hasanadvantageover conventional binary search: on eachbranchtowards
longer prefixes,not only therangeof prefix lengthsto be searched is reduced,but also the
number of prefixesin eachof theselengths. Binary searchon prefix lengths thus narrows
thesearchin two dimensionson eachmatch, asil lustratedin Figure 11.

Thus the whole idea in mutating binary search is as follows: whenever we get a match
and moveto a new subtrie, we only needto do binary search on the levelsof new subtrie.
In other words, the binary searchmutatesor changesthe levels on which it searchesdy-
namically (in awaythatalwaysreducesthelevelsto besearched), asit getsmoreandmore
match information.

X

Root

New Trie on Failure

m = Median Length
among all prefix
lengths in trie

New Trie on Match
(first m bits of
Prefix = X)

Fig. 11. Showing how mutating binary search for prefix � dynamically changes the trie on which it wil l do
binarysearch of hashtables.

Thuseach entry � in thesearch tablecould contain a description of a search treespe-
cializedfor all prefixesthatstart with � . Theoptimizationsresultingfromthisobservation
improve lookupssignificantly:

Worst case: In all thedatabasesweanalyzed, wewereableto reducetheworst casefrom
five hashesto four hashes.

Average case: In the largesttwo databases,the majority of the addresses is found in at
most two hash lookups. The smaller databasestake a little bit longer to reach their
halfwaypoint.

UsingMutatingBinary Search, looking for anaddress(seeFigure13) is different.First,
we explain some new conventionsfor reading Figure13. As in theotherfigures,we con-
tinue to draw a binary searchtreeon top. However, in this figure, we now have multiple
partial trees,originating from any prefix entry. This is because the search processwill
movefromtreeto tree,starting with overall tree.Eachbinary treehas the“root” level (i.e.,
thefirst length to besearched)attheleft; theleft child of eachbinarytreenodeis thelength
to besearchedon failure, and whenever there is a match, the search switchesto themore
specifictree.

Consider now a search for address
�:���
�:�

, matching the prefix labelled � , in the
databaseof Figure 13. The searchstartswith the generic tree, so length 4 is checked,
finding � . Among theprefixesstarting with � , thereare known to be only threedistinct

Scalable High-Speed Prefix Matching 17

 0%

 20%

 40%

 60%

 80%

100%

1 2 3 4

P
re

fix
es

 fo
un

d

Search Steps

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

Average

Fig. 12. Number of HashLookups(Note: No average-caseoptimizations)

1

2

3

4

6

5 7

Overall Search Tree

0* 00* 000*

10000*1000*

0000* 000000*

1111* 11110* 1111000

6

5

5

7

1100* 11001* 110000* 1100000

6
5 7

110011*
B:

A:

F: G: H:

0111* 01110* 011100*
5

6

Fig. 13. MutatingBinarySearch Example

lengths (4, 5, and 6). So � contains a description of the new tree, limiting the search
appropriately. This treeis drawn asrooting in � . Using this tree,we find � , giving a new
tree, theempty tree. Thebinary treehasmutated from the original treeof 7 lengths, to a
secondary treeof 3 lengths, to a tertiary empty “tree”.

Looking for
���:���

, matching � , is similar. Usingtheoverall tree, wefind � . Switch-
ing to its tree, we missat length 7. Sincea miss(no entry found) can’ t updatea tree,we
follow our current treeupwards to length 5, wherewe find � .

In general, whenever we go down in the current tree, we can potentially move to a
specializedbinary treebecauseeachmatch in thebinarysearchis longer thanany previous
matches,and hencemay contain morespecialized information. Mutating binary treesarise
naturally in our application (unlikeclassicalbinary search) becauseeachlevel in thebinary
searchhasmultiple entries storedin a hashtable. asopposed to a single entry in classical
binary search. Eachof themultiple entriescanpoint to amore specializedbinary tree.

In other words, thesearch is no longer walking through a single binary search tree,but
through a whole network of interconnectedtrees. Branching decisions are not only based
on thecurrentprefix length and whether or not a matchis found, but also on whatthe best

18 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

match so far is (which in turn is basedon the addresswe’re looking for.) Thus at each
branching point, you not only selectwhich way to branch, but alsochange to the most
optimal tree. This additional information about optimal treebranches is derived by pre-
computation basedon the distribution of prefixes in the current dataset. This givesus a
fastersearchpattern thanjust searching on eitherprefix length or addressalone.

Two possible disadvantagesof mutating binary search immediately presentthemselves.
First,precomputing optimal trees canincrease the time to inserta new prefix. Second, the
storagerequiredto storeanoptimal binary treefor eachprefix appearsto beenormous. We
deal with insertion speedin Section5. For now, weonly observethatwhile the forwarding
informationfor a given prefix may frequently change in cost or next hop, the addition or
deletionof anew prefix (which is theexpensivecase)is bemuchrarer. Weproceedto deal
with thespaceissueby compactly encoding thenetwork of trees.

4.2.1 Bitmap. One short encoding method would be to storea bitmap, with each bit
set to one representing a valid level of the binary search tree. While this only uses �
bits, computing a binary treeto follow next is anexpensive task with current processors.
Theuseof lookup tablesto determine themiddle bit is possible with short addresses(such
asIPv4) anda binary search root close to the middle. Then, after the first lookup, there
remain around 16 bits (lessin upcoming steps), which lend themselves to a small (�F�
bytes)lookup table.

4.2.2 Rope. A key observation is thatweonly needto storethesequenceof levelswhich
binary search on a givensubtrie will follow on repeatedfailuresto find a match. This is
becausewhenwe get a successfulmatch(see Figure 11), we move to a completely new
subtrie and canget the new binary searchpath from the new subtrie. The sequence of
levelswhich binary searchwould follow on repeatedfailuresis whatwe call theRopeof
a subtrie, and canbe encoded efficiently. We call it Rope, becausetheRope allows us to
swingfrom treeto tree in our network of interconnectedbinary searchtrees.

If we consider a binary search tree,we define the Rope for the root of the trie node to
bethesequenceof trie levelswe will consider whendoing binary searchon the trie levels
while failing atevery point. This is illustrated in Figure14. In doing binary searchwestart
at Level � which is themedian length of the trie. If we fail, we try at the quartile length
(say ~), and if we fail at ~ we try at the one-eight level (say �), and soon. Thesequence� | ~ | � |&rsrqr is theRope for thetrie.

m

n

o Eight Level

Quarter Level

Median Level

m

n

o

•

• • •

Fig. 14. In termsof a trie,a ropefor thetrienodeis thesequenceof lengthsstarting from themedianlength, the
quartile length, andsoon, which is thesameas theseries of left children (seedottedoval in binary treeon right)
of aperfectly balanced binary treeon thetrie levels.

Scalable High-Speed Prefix Matching 19

Figure 15 shows the Ropescontaining the same informationasthe treesin Figure 13.
NotethataRopecanbestoredusingonly �-��� 	 � (7 for IPv6) pointers. Sinceeachpointer
needsto only discriminateamong at most � possible levels, eachpointer requires only�-��� 	 � bits. For IPv6, 64 bits of Rope is more than sufficient, though it seems possible
to get away with 32 bits of Rope in most practical cases. Thus a Rope is usually not
longer than the storagerequired to store a pointer. To minimize storage in the forwarding
database,a single bit can beused to decidewhetherthe ropeor only a pointer to a rope is
stored in a node.

1

2

4
Initial Rope

0* 00* 000*

10000*1000*

0000* 000000*

1111* 11110* 1111000

6

5

5

7

1100* 11001* 110000* 1100000

6
5

7

110011*

0111* 01110* 011100*
5 6

3

Fig. 15. SampleRopes

UsingtheRopeasthedatastructurehasasecond advantage: it simplifies thealgorithm.
A Ropecaneasilybefollowed, by just picking pointer after pointer in the Rope,until the
next hit. Eachstrandin theRope is followedin turn, until thereis ahit (which startsanew
Rope),or theendof the Rope is reached. Following theRopeon processors is easilydone
using “shift right” instructions.

Pseudo-code for the Rope variation of Mutating Binary Search is shown below. An
elementthatis a prefix but not a marker (i.e., the “terminal” condition) specifiesan empty
Rope,which leads to search termination. The algorithm is initiali zedwith astarting Rope.
The starting Rope corresponds to the default binary search tree.For example,using 32 bit
IPv4 addresses, thestarting Ropecontainsthestarting level 16, followedby Levels8, 4, 2,
1. The Levels8, 4, 2, and 1 correspond to the “left” pointers to follow whenno matches
arefound in thedefault tree.Theresulting pseudo-code(Figure 16) is elegant and simple
to implement. It appearsto besimpler thanthe basic algorithm.

4.3 Trading Speed Against Memory

Thefollowing sectionswill discussanumberof mechanismsthatallow tuning thetradeoff
betweensearch speedand memory requirementsaccording to the application’sdesires.

4.3.1 Using Arrays. In caseswhereprogramcomplexity and memory usecan betraded
for speed, it might be desirable to change the first hashtable lookup to a simple indexed
array lookup, with the index being formedfrom the first �Q� bits of the address, with ���

20 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

Function RopeSearch(>) (* search for address> *)
InitializeRope ? containing thedefault searchsequence;
InitializeBMP sofar to null string;
While ? is notempty do

Pull thefirst strand (pointer)off ? andstore it in A ;
Extract thefirst L[i]. lengthbits of > into > P ;c

:= Search(> P , L[i].hash); (* search hashtable for > P *)
I f
c

is notnil then
BMP := M.bmp; (* updatebestmatching prefix so far *)? := M.rope; (* get thenew Rope, possibly empty *)

Endif
Endwhile

Fig. 16. RopeSearch

being the prefix length at which the search would be started. For example, if ��� � :�
, we

would have anarray for all possible �F� valuesof the first 16 bits of a destination address.
Each array entry for index Z will containtheBMP of Z aswell asa Ropewhich will guide
binarysearchamong all prefixesthatbegin with Z . An initial array lookup is not only faster
than ahashlookup, but also results in reducing theaveragenumberof lookups,sincethere
will be no missesat the starting level, which could directthesearchbelow � � .

4.3.2 Halving the Prefix Lengths. It is possible to reduce the worst case search time
by another memory access. For that, we halve the number of prefix lengths by e.g. only
allowing all the evenprefix lengths, decreasingthe �-���Q� searchcomplexity by one. All
theprefixeswith odd lengthswould thenbeexpandedto two prefixes,each onebit longer.
For oneof them, theadditionalbit would beset to zero, for theother, to one.Together, they
would cover thesamerangeastheoriginal prefix. At first sight, this looks likethememory
requirement will be doubled. It canbeshown that the worstcasememory consumption is
not affected, since thenumber of markersis reducedat thesame time.

With � bits length, eachentry could possibly require up to �-�����5���R_
markers (the

entry itself is the �-���V� th entry). When expanding prefixesasdescribedabove,someof the
prefixeswill bedoubled. At thesametime, � is halved, thuseachof theprefixesrequires
at most �-�����5�v�s ���_ � �-�����5����_� markers.Sincethey matchin all but their least bit,
they wil l shareall themarkers,resulting again in at most �-����� entriesin thehashtables.

A second halving of thenumber of prefixesagain decreasestheworst casesearch time,
but this time increasesthe amount of memory, sinceeachprefix canbeextendedby up to
two bits, resulting in four entriesto be stored,expanding the maximum numberof entries
neededper prefix to �-�����������

. For many casesthe search speedimprovement will
warrantthe small increasein memory.

4.3.3 Internal Caching. Figure 8 showed that the prefixeswith lengths 8, 16, and24
cover most of the addressspace used. Using binary search, thesethree lengths can be
coveredin just two memory accesses.To speed up thesearch, eachaddress that requires
morethantwo memory accessesto searchfor will becachedin oneof theseaddresslengths
according to Figure 17. Comparedto traditional caching of complete addresses, these
cache prefixescover a largerareaandthusallow for abetterutilization.

Scalable High-Speed Prefix Matching 21

Function CacheInternally(� , � , @ ,
c

)
(* foundprefix � at length @ after taking

c
memoryaccesses

searching for � *)
If
c����

then(* Caching canbeof advantage*)
Roundupprefix length @ to nextmultipleof 8;
Insert copy of � ’sentry at @ , using the @ first bits of � ;

Endif

Fig. 17. Building theInternal Cache

4.4 Very Long Addresses

All the calculations above assume the processor’s registers arebig enough to hold entire
addresses. For long addresses,such asthoseused for IP version6, this does not always
hold. Wedefine � asthenumberof bits theregistershold. Insteadof working on theentire
address at once, the database is setup similar to a multibit trie [Srinivasanand Varghese
1999] of stride � , resulting in a depth of ��� � ���q� . Eachof these“trie nodes” is then
implementedusing binary search. If the “trie nodes”usedconventional technology, each
of themwould require �'�Y � ¡� memory, clearly impractical with modernprocessors,which
manipulate32 or 64 bits at a time.

Slicingthedatabaseintochunksof � bitsalsorequireslessstoragethanunsliced databases,
sincenot theentire longaddressesdonot needto bestoredwith everyelement. Thesmaller
footprint of anentry alsohelpswith hashcollisions(Section7).

This storageadvantagecomesat a premium: Slower access. The number of memory
accesseschangesfrom �-��� 	 � to �V�¢�-��� 	 � , if thesearch in theintermediate“tr ie nodes”
begins at their maximum length. This hasno impact on IPv6 searcheson modern 64 bit
processors (Alpha, UltraSparc, Merced), which stayat 7 accesses. For 32 bit processors,
theworst caseusingthe basic schemeraisesby 1, to 8 accesses.

4.5 Hardware Implementations

As we have seenin both Figure 7 andFigure 16, the search functions are very simple,
soideally suitedfor implementationin hardware.Theinner component, most likely done
asa hash table in softwareimplementations, canbe implementedusing (perfect) hashing
hardware suchasdescribed in [Spinney 1995], which storesall collisions from the hash
table in a CAM. Instead of the hashing/CAM combinations, a large binary CAM could
be used. Besidesthe hashing function described in [Spinney 1995], Cyclic Redundancy
Check(CRC) generator polynomials are known to result in good hashing behavior (see
alsothe comparisonto other hashing functions in Section 7).

The outer loop in the Rope scheme can be implemented as a shift register, which is
reloadedonevery matchfound, asshown in Figure18. Thismakesfor averysimple hard-
wareunit. For higherperformances,theloop canbeunrolled into a pipelinedarchitecture.
Pipelining is cheaperthanreplicating theentire lookup mechanism: in a pipelined imple-
mentation, eachof theRAMscanbesmaller, sinceit only needs to containthe entriesthat
canberetrievedin its pipelinestage(recallthatthestepduring which anentryis found de-
pends only on the structure of the database, and not on the search key). Consult Figure12
for a distribution of the entries among the different searchsteps. As is true for software
search, Ropesearchwill reducethe numberof stepsperlookup to at most4 for IP version
4 addresses, andhardware may also usean initial array. Pipeline depthwould therefore

22 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

RAM
Mask

Shift
Next
Strand

Compare

IP Address

Hash
Key

Rope

Match

Next
Length

BMP
Register

Hash

MaxColl
Entries

Fig. 18. HardwareBlockSchematic

befour (or five, in aconservativedesign). Besidespipelining, converting binarybranching
to � -ary would provide another way around the relatively high memory accesslatencies.
Insteadof a single probe, asrequired for thebinary decision, �£_ parallel probes would
needto betaken. In our implementation[Braunet al. 2001], using parallel search engines
turnedout to be more efficient thanusinghigher branching degreeswhenonly a single
external dynamicRAM (DRAM) modulewasavailable.

Thehighest speedscanbeachievedusing apipelinedapproach,whereeachstagehasits
own memory. As of this writing, DRAM technology (DDR SDRAMs at 133 MHz), with
informationappropriatelydistributedandcopiedamong thebanksof theSDRAM, enables
a throughput of 8 lookup every 9 cycles,resulting in 118 mill ion packets per second with
inexpensive hardware. This speedis roughly equivalent to 50 Gbit/s with minimum size
packets(40 bytes)or more than400 Gbit/susingmeasuredpacket distributions(354 bytes
average) from June 1997.4 Usingcustom hardwareandpipelining, we thus expecta sig-
nificant speedup to software performance, allowing for affordableIP forwarding reaching
far beyond the single-device transmission speedscurrently reached in high-techresearch
labs.

5. BUILDING AND UPDATING

Besideshashing andbinary search, a predominant ideain this paper is pre-computation.
Every hashtableentry hasan associated ¤¥�§¦ field and(possibly) a Rope field, both of
which areprecomputed. Pre-computation allows fast searchbut requires more complex
Insertionroutines.However, asmentionedearlier, while theroutesstoredwith theprefixes
may change frequently, the addition of a new prefix (the expensive case)is much rarer.
Thusit is worth paying a penaltyfor Insertion in returnfor improvedsearch speed.

5.1 Basic Scheme Built from Scratch

Settingup the datastructure for the Basic Scheme is straightforward, asshown in Fig-
ure 19, requiring a complexity of �'�)(������V��� . For simplicity of implementation, thelist
of prefixes is assumedto be sorted by increasingprefix length in advance(���5(�� using
bucket sort). For optimal searchperformance, thefinal hashtablesshould ensure minimal
coll isions(seeSection 7).

To build a basic search structure which eliminatesunusedlevelsor to take advantageof
asymmetries, it is necessaryto build the binary search treefirst. Then,insteadof clearing¨
http://www.nlanr.net/NA/Learn/packetsizes.html

Scalable High-Speed Prefix Matching 23

Function BuildBasic;
For all entries in thesortedlist do

Readnextprefix-length pair (� , @) from thelist;
Let A bethe index for the @ ’s hashtable;
UseBasic Algorithmonwhat hasbeenbuilt by now

to find theBMP of � andstoreit in © ;
Add anew prefixnode for � in thehashtable for A ;
(* Now insert all necessary markers“to theleft” *)
For ever do

(* Go uponelevel in thebinary search tree*)
Clear theleast significant set bit in A ;
If A�ª�« thenbreak; (* end reached*)
Set @ to theappropriate length for A ;
Shorten � to @ bits;
If thereisalreadyan entry for � at A then

Makeit a marker if it isn’t already;
break; (* higher levels already dohavemarkers *)

Else
Createanew marker

c
for � at A ’s hashtable;

SetM.bmpto © ;
Endif

Endfor
Endfor

Fig. 19. Building for theBasicScheme

the leastsignificant bit, asoutlined in Figure 19, the build algorithm really hasto follow
the binary search treebackup to find the “parent” prefix length. Some of these parents
may beat longer prefix lengths, asill ustratedin Figure 5. Sincemarkersonly needto be
setat shorterprefix lengths,any parentassociatedwith longer prefixesis just ignored.

5.2 Rope Search from Scratch

Therearetwo ways to build the datastructuresuitable for Rope Search:

Simple: Thesearchorderdoesnot divert fromtheoverall binarysearch tree,only missing
levelsare left out. This results in only minor improvements on thesearch speedand
canbe implementedasa straightforward enhancement to Figure 19.

Optimal: Calculating the shortest Ropeson all branching levels requiresthe solution to
an optimization problem in two dimensions. As we have seen,each branch towards
longerprefix lengths also limits thesetof remaining prefixes.

Wepresent thealgorithm which globally calculatestheminimumRopes, basedondynamic
programming. Thealgorithm canbe split up into threemainphases:

(1) Build aconventional (uncompressed) trie structurewith ���)(���� nodescontaining all
the prefixes(����(���� time and space).

(2) Walk through the trie bottom-up, calculating the cost of selecting different branching
points and combining themon the way up using dynamic programming (����(�� � �
time and space).

(3) Walk through the trie top-down, build the Ropesusing the resultsfrom phase 2, and
insert the entries into the hashtables(�'�5(7�¬�-������� time, working on the space
allocatedin phase2).

24 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

To understand thebottom-up merging of the information in phase2, let usfirst look at
theinformationthatis necessary for bottom-upmerging. RecalltheRopesin Figure15. At
eachbranching point, the searcheither turns towards longer prefixesand a more specific
branching tree, or towards shorter prefixeswithout changing the setof levels. Thegoal is
to minimize worst-casesearch cost, or thenumberof hashlookupsrequired. Theoverall
cost of putting adecisionpoint atprefix length is themaximum path length on eitherside
plusonefor thenewly inserteddecision. Looking at Figure15, thelongestpathon theleft
of our starting point haslength two (the pathsto

���
or
�������

). Whenlooking at the right
hand side, the longestof the individual searchesrequire two lookups (

�:������
,
�����������

,�������
, and

�
��������
).

Generalizing, for eachrange W coveredandeachpossibleprefix length split ting this
range into two halves, W\® and W\¯ , the program needs to calculatethe maximum depth
of the aggregate left-hand tree W ® , covering shorter prefixes,andthe maximum depthof
the individual right-hand trees W¡¯ . When trying to find an optimal solution, the goal is
to minimize thesemaxima, of course. Clearly, this processcan be applied recursively.
Insteadof implementing a simple-minded recursive algorithm in exponential time,we use
dynamic programming to solve it in polynomial time.

Root of
 processed
 subtrie (t)

Trie's root (r)

Start
(s)

End
(e)

Mini-
 tries

In
cr

ea
si

ng
 p

re
fix

 le
ng

th

(a)Structures

Leaf set-up

Propagate

Merge

Merge+

LLL

LP+

P

M

M+

M

In
cr

ea
si

ng
 p

re
fix

 le
ng

th

Propagate+

Trie node with associated prefix

(b) Casestreated

Fig. 20. RopeConstruction,Phase2

Figure20(a)showstheinformationneededto solvethisminimization problem. For each
subtree ° matching a prefix

�
, a tablecontaining information about the depthassociated

with the subrange W ranging from start length # to end length ± is kept. Specifically,
we keep (1) the maximum over all the individual minimal-depth trees(²´³), as used for
branching towards longer prefixesand (2) the minimal aggregate tree(²¶µ), for going to
shorter prefixes.Eachof thesetreesin turn consistsof both a left-handaggregatetreeand
right-hand individual branching trees.

Using the dynamic programming paradigm, we start building a table (or in this case,
a table per trie node) from the bottom of the trie towards the root. At each node, we
combine the information the childrenhave accumulatedwith our local state,i.e. whether
thisnodeisanentry. Fivecasescanbeidentified: (L) settingupaleafnode,(P)propagating
the aggregate/individual tables up one level, (P+) same,plus including the fact that this
nodecontainsavalid prefix, (M) merging thechild’saggregate/individual tables,and (M+)

Scalable High-Speed Prefix Matching 25

merging and including thecurrent node’sprefix. As can beseen,all operationsareasubset
of (M+), working on lesschildrenor not adding thecurrent node’s prefix. Figure 21 lists
thepseudo-codefor this operation.

Function Phase2MergePlus;
Set · to thecurrent prefix length;

(* Mergethechildren’s ¸´¹ below · *)
Forall º:»U¼ where º¾½m¿ ·VÀ7Á¶Â�Â�Â�Ã�Ä5»F¼Å½x¿-º�Â�Â�Â:Ã�Ä ;

(* Mergethe ¸ ¹ mini-treesbetweenStart º andEnd ¼ *)
If bothchildren’sdepthfor ¸´¹�¿Æºq»U¼:Ä is 0 then

(* No prefixesin either mini-tree*)
Set this node’sdepthfor ¸ ¹ ¿Æºq»U¼:Ä to 0;

Else
Set this node’sdepthfor ¸´¹�¿Æºq»U¼:Ä to the

themaxof thechildren’s ¸�¹:¿�ºq»U¼:Ä depths;
Endif

Endforall

(* “Calculate”thedepth of the treescoveringjust this node*)
If thecurrententryis a valid prefix then

Set ¸´¹�¿ ·Ç»U·ÈÄ�É�¸�Ê�¿ ·Ë»U·ÈÄ
ÉÌÁ ; (* A treewith a single entry *)
Else

Set ¸ ¹ ¿ ·Ç»U·ÈÄ�É�¸ Ê ¿ ·Ë»U·ÈÄ
É�Í ; (* An empty tree *)
Endif

(* Mergethechildren’s ¸ Ê , extendto currentlevel *)
For º¾½x¿ ·¾Â�ÂÎÂ�ÃÏÄ ;

For ¼Ð½m¿�º¶À7Á¶Â�Â�Â�Ã�Ä ;
(* Find the bestnext branchinglength Ñ *)
Set ¸ Ê ¿�ºq»U¼:Ä ’s depth to ÒÅÓÆÔ
Õ,¸ ¹ ¿�º�À*Á�»F¼qÄËÀ*Á&Ö)» (* split at º *)ÒÅÓ4Ô�×j-Ø�kOÙ b Õ-ÒxÚ�Û�Õ,¸�Ê�¿Æºq»UÑ�Ü7Á�ÄÇÀÏÁL»F¸´¹�¿ Ñ;»U¼:ÄUÖ5Ö5Ö ; (* split below *)
(* Since ¸�Ê�¿Æºq»UÑ�Ü7Á�Ä is only searchedafter missingat Ñ , add Á *)

Endfor
Endfor

(* “Calculate”the ¸ ¹ at · also*)
Set ¸ ¹ ¿ ·Ç»ÎÝ)Ä to ¸ Ê ¿ ·Þ»�Ý ; (* Only one tree, soaggregated=individual *)

Fig. 21. Phase2 Pseudo-code, runat each trienode

As canbe seenfrom Figure 21, merging the ² µ s takes ����� � � time per node, with a
total of �'�)(7��� nodes. The full merging is only necessaryat nodeswith two children,
shown as(M) and (M+) in Figure 20(b). In any trie, therecanbe only ���5(�� of them,
resulting in anoverall build time of only �'�)(7� � � .

If the optimal next branching point is stored alongside each² µ y # | ±�} , building the rope
for any prefix in Phase3 is a simple matter of following the chain set by thesebranching

26 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

points,by always following ² µ y # prev � �| previousbranching point} . A nodewill be used
asa marker, if the higher-level rope lists itsprefix length.

5.2.1 Degreesof Freedom. The only goal of the algorithm shown in Figure 21 is to
minimize the worst-casenumber of searchsteps. Most of the time multiple branching
pointswill resultin thesameminimal ²´µ depth. Therefore,choosingthesplit point givesa
furtherdegreeof freedom to optimizeotherfactorswithin theboundssetby thecalculated
worst case. This freedom canbe usedto (1) reduce the number of entries requiring the
worst caselookup time, (2) improve the averagesearch time, (3) reduce the number of
markers placed, (4) reducethe number of hashcollisions,or (5) improve updatebehavior
(seebelow). Becauseof limitations in spaceand scope, they will not be discussed in more
depth.

5.3 Insertions and Deletions

As shown in [Labovitz et al. 1997], someroutersreceive routing updatemessagesat high
frequencies, requiring the routers to handle thesemessages within a few milliseconds.
Luckily for the forwarding tables, most of the routing messages in thesebursts are of
pathological nature and do not require any change in the routing or forwarding tables.
Also, most routing updatesinvolve only a change in the route and do not addor delete
prefixes. Additionally, many wide-arearouting protocols suchasBGP [Rekhter and Li
1995] use timersto reducetherateof route changes, thereby delaying and batching them.
Nevertheless,algorithms in wantof beingready for further Internetgrowth should support
sub-second updatesundermostcircumstances.

Adding entries to the forwarding databaseor deletingentries may be done without re-
building the whole database.The lessoptimized the datastructure is, the easier it is to
change it.

5.3.1 UpdatingBasic and Asymmetric Schemes.Wethereforestartwith basic andasym-
metric schemes,which haveonly eliminated prefix lengthswhich will neverbeused.Inser-
tion anddeletionof leaf prefixes, i.e. prefixes,that do not coverothers,is trivial. Insertion
is doneasduring initial build (Figure 19). For deletion, a simple possibility is to just re-
movetheentry itselfand not carefor theremaining markers.Whenunusedmarkersshould
bedeletedimmediately, it is necessaryto maintainper-markerreferencecounters. Ondele-
tion, themarker placementalgorithm from Figure 19 is usedto determine wheremarkers
would be set,decreasing their referencecount anddeleting the marker when the counter
reacheszero.

Should the prefix ¦ being insertedor deletedcover any markers, thesemarkersneedto
be updatedto point to their changedBMP. There are a number of possibilitiesto find all
the underlying markers. Onethat doesnot require any helper datastructures,but lacks
efficiency, is to either enumerateall possiblelonger prefixes matching our modified entry,
or to walk through all hash tables associated with longer prefixes. On deletion, every
marker pointing to ¦ wil l be changed to point to ¦ ’s BMP. On insertion, every marker
pointing ¦ ’s currentBMP andmatching ¦ will beupdated to point to ¦ . A more efficient
solution is to chain all markerspointing to a givenBMP in a linkedli st. Still, this method
could require ����(ß�����Q��� effort, since ¦ cancover any amount of prefixesandmarkers
from the entire forwarding database. Although the number of markers coveredby any
givenprefix wassmall in the databaseswe analyzed(seeFigure 22), Section 6 presents a
solution to boundtheupdateefforts,which is importantfor applicationsrequiring real-time

Scalable High-Speed Prefix Matching 27

guarantees.

1

10

100

1 10 100

F
re

qe
nc

yà

Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(a) “PureBasic” (withoutLengthElimination)

1

10

100

1 10 100

F
re

qe
nc

yà

Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(b) Basic

1

10

100

1 10 100

F
re

qe
nc

y

Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(c) Asymmetric

1

10

100

1 10 100

F
re

qe
nc

y

Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(d) Rope

Fig. 22. Histogram of Markersdepending on a Prefix (log scales)

During the previous explanation, we have assumedthat the prefix being insertedhada
length which wasalreadyusedin the database. In Asymmetric Search, this may not al-
ways be true. Depending on thestructure of the binary search trie around thenew prefix
length, adding it is trivial. Theaddition of length 5 in Figure 23(a) is one of these exam-
ples. Adding length 6 in Figure 23(b) is not aseasy. Onepossibility , shown in theupper
example, is to re-balance the trie structure, which unlike balancing a B-tree can result in
severalmarkers being inserted: One for eachpre-existing prefix not coveredby our newly
insertedprefix, but coveredby its parent. This structural change canalso adversely affect
theaveragecasebehavior. Anotherpossibility, shown in the lower right, is to immediately
add the new prefix length, possibly increasingtheworst casefor this single prefix. Then
we wait for a completerebuild of thetreewhich takes careof the correctre-balancing.

We prefer the second solution, since it doesnot needmore than the plain existing in-
sertion procedures.It alsoallows for updatesto take effect immediately, andonly incursa
negligible performancepenalty until thedatabasehasbeenrebuilt. To reducethefrequency

28 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

1

2

3

4

6

7

1

2

3

4

7

5

1

2

3

4

6

75

5Adding

6Adding

1

2

3

4

6

75

1

2

3

4

5

7

6

(a)

(b)

Fig. 23. AddingPrefixLengths(GrayNodeschangeRope)

of rebuilds, the binary search treemay be constructedasto leave room for inserting the
missingprefix lengthsatminimal cost.A third solution would beto split aprefix into mul-
tiple longerprefixes,similar to theone usedby Causal Colli sion Resolution Section7.1.

5.3.2 Updating Ropes. All theaboveinsightsalsoapply to RopeSearch, andevenmore
so,since it usesmany local asymmetric binary search trees, containing a largenumberof
uncoveredprefix lengths. Inserting a prefix hasa higher chance of adding a new prefix
length to the current search tree,but it will alsoconfine the necessary re-balancing to a
smallsubsetof prefixes.Therefore,webelievethesimplest,yetstill very efficient,strategy
is to add a marker at the longestprefix length shorter than ¦ ’s,pointing to ¦ . If this should
degradethe worst-case search time, or anyway after a large number of these insertions,
a background rebuild of the whole structure is ordered. The overall calculation of the
optimal branching points in phase2 (Figure 21) is very expensive, ���5(7� � � , far more
expensive than calculating theropesand inserting theentriesTable4. Justrecalculating to
incorporatethechangesinducedby arouting updateis muchcheaper, asonly thepathfrom
this entry to the root needsto beupdated,at most �'�)��á"� , giving a speedadvantageover
simplerebuild of aroundthreeordersof magnitude.EventhoughRopeSearchis optimized
to very closelyfit around the prefix database,Rope Search still keeps enough flexibilit y to
quickly adaptto any of thechangesof thedatabase.

Table4. Build SpeedComparisons (Buil t from Trie)
Basic Rope Entries
Hash Phase2 Ropes Hash

AADS 0.56s 11.84s 0.59s 0.79s 24218
Mae-East 1.82s 14.10s 0.85s 1.69s 38031
Mae-West 0.58s 11.71s 0.60s 0.85s 23898
PAIX 0.09s 4.16s 0.18s 0.07s 5924
PacBell 0.48s 11.04s 0.57s 0.73s 22850
Mae-East
1996 1.14s 13.08s 0.75s 1.12s 33199

The timesin Table 4 weremeasuredusingcompletelyunoptimizedcode on a 300 MHz

Scalable High-Speed Prefix Matching 29

UltraSparc-II. We would expect large improvements from optimizing the code. “Hash”
refersto building thehashtables,“Phase2” is phase2 of theropesearch, “Ropes” calcu-
latestheropesand setsthemarkers. Just adding or deletinga single entry takesorders of
magnitudeslesstime.

6. MARKER PARTITIONING

Theschemeintroducedbelow, recursivemarker partitioning, significantly reducesthecost
of marker updatesidentified asa problem above. It does this by requiring at most one
additional memory accessper entire search, whenever thelastmatchin thesearchwason
a marker. Using rope searchon theexamineddatabases, anadditional memory lookup is
requiredfor rsr&rÈ��â of theaddresses, anegligible impact on theaveragesearchtime. Of
the searchesthat require the identified worst case of four steps, only

�\r&rsr â require an
additional fifth memory access.

Furthermore, prefix partitioning offersa tunabletradeoff between the penalty incurred
for updatesandsearches,whichmakesit very convenient for awiderangeof applications.

6.1 Basic Partitioning

To understandthe concept and implications of partitioning, we startwith a single layer
of partitions. Assume an address spaceof 4 bits with addressesranging from 0 to 15,
inclusive. Thisspacealsocontainsninemarkers,labeled ã to ä u , asshown in Figure24(a).
For simplicity, theprefixesthemselvesare not shown. Recallthateachmarker contains a
pointer to its BMP. This information requiresupdatewhenever theclosest covering prefix
is changed.

Assumetheprefix designatednew is inserted. Traditional approacheswould require the
insert procedure to walk through all the markerscoveredby new and correct their BMP,
taking up to (��-����� steps. Marker partitioning groups these markers together. Assume
we had groupedmarkers ã � to ã � in group ã , markers ¤ � to ¤ � in ¤ , and ä � to ä � in ä . Note
that theprefixesin thegrouparedisjoint and hence,wecan storeasingleoverlappingBMP
pointer information for all of them insteadof at each of themindividually. Thus, in this
example, we would remember only threesuch entries — oneper group or partition. This
improves the time required from updating eachentry to just modifying the information
common to thegroup. In our example above (Figure24(a)), whenadding the new prefix,
we seethat it entirely coversthe partitions ã , ¤ and ä . Thus,our basicschemeworks well
aslong asthe partition boundariescanbechosensothat no marker overlapsthemand the
new prefix coversentiregroups.

But when looking at one more example in Figure 24(b), where partition A contains
markers ã � | ã 	 | ã � , partition B contains ¤ � | ¤ 	 | ¤ � and partitionCcontains ä � | ä 	 | ä � . Clearly,
thepartition boundariesnow overlap. Although in this example it is possible to find par-
titionings without overlaps, prefixes covering a large part of the addressspacewould
severely limit the ability to find enough partitions. Thus, in the more general case,the
boundaries betweenthe splits are no longer well-defined; there are overlaps. Becauseof
thenature of prefix-style ranges, at most � distinct ranges may encloseany givenpoint.
This is also true for the markerscrossing boundary locations. So at eachboundary, we
could store the at most � markersthatoverlap it and test against thesespecialcasesindi-
vidually whenadding or deletinga prefix like new. It turns out to be enough to store these
overlappingmarkersatonly asingle oneof theboundariesit crosses.This is enough, since
its BMP will only needto change when a modification is done to an entry covering our

30 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a1 a2

a3

b1

b3b2

c1

c2

c3

Prefix
Length

Range covered

4

3

2

1

0
new

a b c

(a) SimplePartitioningExample

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a1 a2

a3

b1 b3

b2

c1

c2

c3

Prefix
Length

Range covered

4

3

2

1

0

new

a b c

Overlapping
partitions

Partitions with
boundary "bags"

a3 b3

(b) Partitionswith Overlaps

Fig. 24. Markerpartitioning explained

prefix.
For simplicity of the remaining explanations in this section, it is assumedthat it is pos-

sible to split the prefixesin a non-overlapping fashion. Oneway to achieve that would be
to keepa separatemarker partition for eachprefix length. Clearly, this separationwil l not
introduceany extra storage and thesearch time will be affectedby at most a factor of � .

Continuing our example above (Figure 24(b)), whenadding the new prefix, we seethat
it entirely coversthe partitions ã , ¤ andpartially covers ä . For all the covered partitions,
weupdatethepartitions’ BestMatch.Only for thepartially coveredpartitions,we needto
process their individual elements.Thechangesfor the BMP pointers areoutlined in bold
in the Table 5. The real value of the BMP pointer is the entry’s value,if it is set,or the
partition’s valueotherwise. If neither the entry nor the entry’s containing partition contain
any information, asis thecasefor ä � , thepacketdoesnot matchaprefix (filter) atthis level.

Generalizing to ¦ partitions of ± markerseach, we cansee thatany prefix will cover at
most ¦ partitions, requiring at most ¦ updates.

At mosttwo partitionscanbepartially covered, oneat thestart of thenew prefix, oneat

Scalable High-Speed Prefix Matching 31

Table 5. Updating BestMatching Prefixes
Entry/Group Old BMP

stored
New BMP
stored

Resulting
BMPå b — — newå e — — newå � — — newå — new (N/A)æ b å � å � å �æ e — — newæ � æ e æ e æ eæ

— new (N/A)ç b — new newç e — — —ç � — — —ç — — (N/A)

theend. In a simple-mindedimplementation, at most ± entriesneedto be updatedin each
of the split partitions. If more than ±L�q entries require updating, insteadof updatingthe
majority of entries in this partition, it is alsopossibleto relabel the container andupdate
theminority to store the container’soriginal value.This reducestheupdateto at most ±L�q
per partially coveredmarker, resulting in a worst-casetotal of ¦��Ï �±L�q � ¦è�v± updates.

As ¦ � ± waschosento be (, minimizing ¦§�é± results in ¦ � ± �ëê (. Thus, the
optimal splitting solution is to split the database into

ê (setsof
ê (entries each. This

reducesupdatetime from ���5(*� to �'� ê (*� at the expense of at most a single additional
memory accessduring search. This memory access is neededonly if the entry does not
storeits own BMP value and we needto revert to checking the container’s value.

6.2 Dynamic Behavior

Insertionanddeletion of prefixesoftengoesaheadwith theinsertion ordeletion of markers.
Over time, thenumberof elementsperpartition and alsoin thetotal numberof entries, (,
will change.Theimplicationsof thesechangesarediscussedbelow. For readability, ì will
beusedto represent

ê (, the optimal numberof partitionsandentriesper partition.
The näıve solution of re-balancing the whole structure is to make all partitions equal

sizeafterevery change to keepthembetweení¥ì�î and +¥ì�. . This canbedoneby ‘shifting’
entries through the list of partitions in �'�5ìï� time. This breaksassoon asthe number of
partitions needs to be changed when ì crossesan integer boundary. Then, �'�)ì¾� entries
need to be shifted to the partition that is being createdor from the partition that is being
destroyed, resulting in �'�5(*� entries to be moved. This obviously doesnot fit into our
bounded updatetime.

We needto be able to createor destroy a partition without touching more than �'�5ì¾�
entries. We thus introduce a deviation factor, ð , which defines how much the number
of partitions, ¦ , and the number of elementsin eachpartition, ±�8 , may deviate from the
optimum, ì . The smallest value for ð which allows to split a maximum-sized partition
(size ìXð) into two partitions not below theminimum size ì���ð and vice versais ð � ê .
This value will alsosatisfy all otherconditions,aswe will see.

Until now, wehaveonly triedto keeptheelements ± 8 in eachpartition within thebounds
setby ì and ð . As it turns out, this is satisfactory to alsoforcethenumber of partitions ¦
within thesebounds,since (/��ñ/ò-óô± 8Xõ ì´��ð and ('��ñ/ö�÷�± 8 [øìïð .

32 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

Wheneverapartition growstoobig, it is split into two or distributessomeof its contents
acrossone or both of its neighbors, asil lustratedin Figure 25. Conversely, if an entry is
getting too small, it eitherborrows from one or both of its neighbors, or mergeswith a
suitably small neighbor. Clearly, all theseoperations canbe done with touching at mostì�ð entriesand at most3 partitions.

The split operation is sufficient to keep the partitions from exceeding their maximum
size,sinceit can be doneat any time. Keeping partitionsfrom shrinking beyond thelower
limit requiresbothborrow (aslong as at leastone of theneighbors is still above themini-
mum) and merge (assoon asone of themhasreached the minimum).

0

S

Max

Min
Split

Merge Borrow

Distribute

Fig. 25. DynamicOperations

ì crossingan integerboundary may result in all partitions to becomeeithertoo big or
too small in one instant. Obviously, not all of themcan be split or merged at the same
time without violating the ���)ìï� bound. Observe that there will be at least Çì*� further
insertionsor Çì�_

deletionsuntil ì crossesthe next boundary. Also observe that there
will be at most ì���ð maximum-sizedentries and ìXð minimum-sizedentries reaching the
boundaries.5 If we extendthe boundaries by one on each side, there is plenty of time to
perform thenecessarysplitsor mergesoneby one before the boundarieschange again.

Instead of being ‘retro-active’ with spli tting andjoining, it can alsobe imagined to be
pro-active. Then,alwaysthe partition furthest away from the optimal valuewould try to
get closerto the optimum. This would make theupdatesevenmore predictable,but at the
expenseof alwaysperforming splitsor joins.

To summarize, with the new bounds of ì���ð£_
to ì�ð��

, eachinsertion or deletion
of a noderequiresat most
�5ì�ðô� � updatesof BMP pointers, moving ì�ð"�s entriesto a
new partition, and on boundary crossingì�ð£� checks for minimal size partitions. This
results in ���)ìXðÇ� work, or with ð chosena constant

ê , �'�)ì¾� � ��� ê (Ï� . All further
explanations will consider ð � ê . Also, sincewe have ���5#�� partitions,eachwith ����#��
pointers, thetotal amount of memory needed for thepartitionsis �'�5(*� .
6.3 Multiple Layers of Partitioning

We have shown that with a single layer of partitions, updatecomplexity canbe limited to�'� ê (�� with at mosta single additional memory accessduring search.
It seems natural to extend this to more thanone layer of grouping andto split the par-

titions into sub-partitions andsub-sub-partitions, similar to a tree. Assume we defined a
treeof ù layers(including the leaves). Eachof the layers would then contain # �ûúê (
entriesor sub-partitions of theenclosedlayer. As will be shown below, theupdate time is

ü
If therearemore than ýÇþsÿ � minimum-sized entries, than someof them have to be right beside each other.

Thena single merge wil l eliminate two of them. Therefore, there will beat most ý�þsÿ � operationsnecessary to
eliminateall minimum-sized entries.

Scalable High-Speed Prefix Matching 33

then reducedto ���)ù úê (*� at the expenseof up to ù§_ memory accessesto find the Best
Matchassociatedwith theinnermost containerlevel who hasit set.

Prefix updates At the outermost layer, at most #Lð containers will be covered, with at
most two of thempartially. Thesetwo in turn will contain at most #Èð entrieseach, of
which at themost #ÈðË�q needto beupdated, andatmost onefurthersplit partition. We
continuethisuntil the innermostlevel is found, resulting in at most #Èð��7�)ùô_ �= �#Lð��q
changes,or �'�)#�� .

Splitting and Joining At any one level, the effort is # . In the worst case, ù levels are
affected,giving �'�)#ÈùX� .

Boundary Crossing of # The numberof insertions or deletionsbetweenboundary cross-
ings is �)#Ð� ����_ø#�� , while the number of minimal-sizedpartitions is

� % �8�� � # 8 ��5#���_7#L������#
_ � . So thereis enoughtimeto amortize thenecessary changesover time
oneby one during operationsthat do not themselvescausea split or join.

6.4 Further Improvements

For many filter databases it would make senseto choose ù dynamically, basedon the real
number of entries. The total number of markers for most databases will be much less
than the worst case.If optimal search time should be achieved with bounded worst-case
insertion, it seemsreasonable to reduce thepartition nestingdepth to matchtheworst-case
update. Often,this will reduce thenestingto a single level or eveneliminateit.

7. FAST HASHING WITH BOUNDED COLLISIONS

Many algorithmsareknown for hashing. Sincewehavementionedasinglememory access
per lookup, thenumber of collisionsneedsto betightly bounded. Onewell-known solution
is perfecthashing [Fredmanetal. 1984]. Unfortunately, trueperfecthashingrequiresenor-
mousamountsof timeto build thehashtablesandalsorequirescomplex functionsto locate
theentries. While perfecthashing is a solution thatsatisfiesthe �'� � accessrequirement,
it is often impractical. An improvement, dynamic perfect hashing [Dietzfelbinger et al.
1994], also achieves ��� � lookup timeatamortizedcost of ��� � perinsertion, by having a
two-level hierarchy of randomly chosenhashing functions. Thus, it requirestwo memory
accessesper hashlookup, making it an attractive option.

With memory pricesdropping, memory cost is no longer oneof themain limiting factor
in routerdesign. Therefore, it is possible to relax thehashing requirements. First, we no
longer enforceoptimal compaction, but allow for sparse hashtables. This alreadygreatly
reducesthechancesfor collisions.

Second, we increasethe hashbucket size. With current DRAM technologies,the cost
of a random accessto a single bit is almost indistinguishablefrom accessing many bytes
sequentially. Modern CPUstake advantage of this and always read multiple consecutive
words,evenif only a single byte is requested. Theamount of memory fetchedperaccess,
calleda cache line, ranges from 128 to 256 bits in modern CPUs.This cacheline fetching
usto storea(small) numberof entriesin thesamehash bucket,with no additional memory
access penalty (recall that for most current processors, accessto main memory is much
slower than accessto on-chip memory and cachesor instruction execution.)

Wehaveseen several key ingredients:randomizedhash functions (usually only asingle
parameteris variable), over-provisioning memory, and allowing a limitednumber of colli-
sions, asboundedby thebucketsize. By combining these ingredientsinto ahashfunction,

34 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

we were ableto achieve single memory accesslookup with almost ��� � amortizedinser-
tion time.

In our implementations, we havebeenusing several hash functions.Onegroupof func-
tions consistsof non-parametric functions,eachone utilizing several cheap processor in-
structions to achieve datascrambling. Switching betweenthesefunctions is achieved by
changing to acompletelynew search function, either by changing a function pointer or by
overwriting the existing function with thenew one.

Theothergroup consistsof asingle functionwhich canbeconfiguredby asingle param-
eter, using

� � Key
�

Scramble � � BucketCount, where
�

is afunctionreturning thefractional
part, Key is thekey to behashed, Scramble w � �\rsrsrL } isaconfigurable scrambling param-
eter, andBucketCount is the number of available hashbuckets. This function does not
requirefloatingpoint andcanbe implementedasfixed-point arithmetic using integer oper-
ations. Sincemultipli cationis generally fastonmodernprocessors,calculationof thehash
function can be hidden behind other operations. Knuth [Knuth 1998] recommends the
scrambling factor to becloseto the conjugated golden ratio (� ê p _ ���q). This function
itself givesa good tradeoff betweenthe collision rateand the additional allocation space
needed.

It is possible to put all the hashentriesof all prefix lengths into onebig hashtable,by
using just one more bit for the addressandsettingthe first bit below the prefix length to
1. This reducesthe collision rateeven furtherwith the same total memory consumption.
Sincemultipli cation is consideredcostly in hardware,we alsoprovide a comparisonwith
a 32-bit Cyclic Redundancy Check code (CRC-32), as usedin the ISO 3309 standard,
in ITU recommendation V.42, and the GZIP compression program [Deutsch 1996]. In
Figure 26(b), a soft lowpass filter hasbeenapplied to increase readability of the graph,
eliminating single peaksof � . Since only primesin steps of about 1000 apart are used
for the table sizes,thereis always a prime hashtable sizeavailable nearby which fulfills
thelimit.

Depending on the width of the availabledatapath, it might thus be more efficient to
allow for more collisions, thus saving memory. Memory requirementsarestill modest.
A single hashtable entry for 32 bit lookups (IPv4) can be stored in as little as 6 or 8
bytes,for thebasicschemesor ropesearch, respectively. All owing for fiveentriesperhash
bucket, thelargestdatabase(MaeEast)will fit into 1.8 to 2.4megabytes.Allowing for six
coll isions,it will fit into 0.9 to 1.2MB.

7.1 Causal Collision Resolution

As canbeseenfrom Figure 26, only very few entriescreatecollisions. If we could reduce
coll isionsfurther, especiallyat these few “hot spots”, we could optimizememory usage or
reduce the numberof operations or the datapathwidth. In this section, we presenta tech-
niquecalled“Causal CollisionResolution” (CCR), which allowsusto reducecoll isionsby
adapting the marker placementandby relocatinghash table entries into dif ferent buckets.
We have seenthatthere areseveral degrees of freedom availablewhendefining thebinary
search(sub-)trees for Asymmetric andRope Search (Section5.2.1), which help to move
markers.

Moving prefixesis alsopossibleby turning one prefix colliding with other hashtable
entries into two. Figure 27(a) il lustratesthe expansionof a prefix from length 1 to two
prefixesat 1È� , covering thesamesetof addresses.This well-known operation is possible
wheneverthe 1 is not amarker level for 1Î� (otherwise,amarkerwith thesamehashkey as

Scalable High-Speed Prefix Matching 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20000 40000 60000 80000 100000

A
ve

ra
ge

 C
ol

lis
io

ns

�

Hash Table Size

MaeEast, Mult
MaeEast, CRC
PacBell, Mult
PacBell, CRC

(a)AverageCollisions

3

4

5

6

7

8

9

10

11

20000 40000 60000 80000 100000

M
ax

 C
ol

lis
io

ns

�

Hash Table Size

MaeEast, Mult
MaeEast, CRC
PacBell, Mult
PacBell, CRC

(b) Maximum Collisions

Fig. 26. CollisionsversusHashTableSize

theoriginal prefix would beinsertedat 1 , nullif ying our efforts). Whenexpansiondoesn’t
work, it is possibleto “contract” theprefix (Figure27(b)). It is thenmovedto length 1�_ ,
thus covering too large a range. By adding a prefix 	 at 1 , complementing the original
prefix within theexcessive range at 1Ë_ , the rangecanbecorrected. 	 storesthe original
BMP associatedwith that range.

The two binary searchtrees shown in Figure 27 are only for illustrative purposes.Ex-
pansionandcontraction alsowork with other treestructures.Whenother prefixesalready
exist at the newly createdentries, precedence is naturally given to the entries originat-
ing from longer prefix lengths. Expansionandcontraction canalso be generalizedin a
straightforward way to work on more than
 prefix lengths.

000*

111*

001*

110*

00*

11*

0000*

0001*

1110*

1111*

000*

111*

3

2 4

3

2 4

3

4

3

4
(a) Expand

(b) Contract

l-1 l l+1 l-1 l l+1

Fig. 27. Causal CollisionResolution

In Figure 28 the numberof bucketscontaining the most collisions andthose containing
just oneentry less are shown. As can be seen, for thevastmajority of hashtable config-
urations, only less thana handful of entries definethe maximum bucket size. In almost
half of the cases, it is a single entry. Even for the bucketswith one entry lessthan the

36 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

0

5

10

15

20

25

30

35

40

45

20000 40000 60000 80000 100000

F
ul

l H
as

h
B

uc
ke

ts

�

Hash Table Size

MaeEast, Mult
MaeEast, CRC
PacBell, Mult
PacBell, CRC

(a) Number of Hash Bucketswith Maximum
Coll isions

0

50

100

150

200

250

300

350

400

450

500

20000 40000 60000 80000 100000

A
lm

os
t F

ul
l H

as
h

B
uc

ke
ts

�

Hash Table Size

MaeEast, Mult
MaeEast, CRC
PacBell, Mult
PacBell, CRC

(b) Numberof Hash Bucketswith OneEntry
Less

Fig. 28. Numberof (Almost) Full HashBuckets

maximum size(Figure28(b)), anegligible amount of buckets(less than1 per thousand for
most configurations)require that capacity.

Usingcausalcollision resolution, it is possible to move one of the “surplus” entries in
thebiggestbucketsto otherbuckets. This makesit possibleto shrink the bucket sizesby
one or two, reducing theexisting modestmemory requirementsby up to a factorof two.

8. PERFORMANCE EVALUATION

Recollecting someof the datamentionedearlier, we show measuredand expectedperfor-
mancefor our scheme.

8.1 Marker Requirements

Although we have seenthatadding markers could extend the number of entries required
by a factor �-��� 	 � . In the typical case,many prefixeswill sharemarkers(Table 6), reduc-
ing the markerstoragefurther. Noticethedifferencebetween“Max Markers”, thenumber
of markers requestedby the entries, and“Effective Markers”, how many markers really
neededto be inserted,thanks to marker sharing. In our samplerouting databases, theaddi-
tional storagerequireddueto markerswasonly a fractionof thedatabasesize.However, it
is easy to give a worst caseexample where thestorageneedsrequire ���Y�-��� 	 ��� markers
per prefix. (Consider (prefixeswhosefirst ����� 	 (bitsareall distinctand whoseremain-
ing bits areall

’s). The numbers listedbelow are taking from “Plain Basic” scheme, but

theamount of sharing is comparablewith otherschemes.

8.2 Complexity Comparison

Table7 collectsthe(worstcase) complexity necessary for thedifferent schemesmentioned
here. Beawarethat thesecomplexity numbersdo not sayanything about theabsolutespeed
or memory usage.SeeSection2 for a comparisonbetweenthe schemes.For RadixTries,
Basic Scheme,Asymmetric Binary Search, and RopeSearch, � is thenumber of distinct
lengths.Memory complexity is givenin � bit words.

Scalable High-Speed Prefix Matching 37

Table 6. MarkerOverheadfor BackboneForwarding Tables
Total Basic: Request for Max Effective

Entries 0 1 2 3 4 Markers Markers
AADS 24218 2787 14767 4628 2036 0 30131 9392
Mae-East 38031 1728 25363 7312 3622 6 50877 13584
Mae-West 23898 3205 14303 4366 2024 0 29107 9151
PAIX 5924 823 3294 1266 541 0 7449 3225
PacBell 22850 2664 14154 4143 1889 0 28107 8806
Mae-East1996 33199 4742 22505 3562 2389 1 36800 8342

Table 7. Speed andMemory UsageComplexity
Algorithm Build Search Memory Update

BinarySearch ����¢G��:K���� ��ÆG �:K���� ������ ������
Trie ����Åg�� ���g�� ����Åg�� ���g��
Radix Trie6 ����Åg�� ���g�� ������ ���g��
Basic Scheme ����¢G��:K�g�� ��ÆG �:K
g�� ����¢G��:K�g�� ������
or ����! ÐG��:K
g�� ���� ú" �ÐgøG��:K
g��
Asymmetric BS ����¢G��:K�g�� ��ÆG �:K
g�� ����¢G��:K�g�� ������
or ����! ÐG��:K
g�� ���� ú" �ÐgøG��:K
g��
RopeSearch ����Åg � � ��ÆG �:K
g�� ����¢G��:K�g�� 7 ������
or ����! ÐG��:K
g�� ���� ú" �ÐgøG��:K
g��
Ternary CAMs ������ ��O�#� 8 ������ ������

8.3 Measurements for IPv4

Many measurementson real-world datahavealreadybeenincludedearlier in thispaper. To
summarize,wehaveshown thatwith modestmemory requirementsof lessthanamegabyte
and simplehardwareor software, it is possible to achievefastbestmatching prefix lookups
with at most four memory accesses,someof themmayevenberesolvedfrom cache.

8.4 Projections for IP Version 6

Although thereoriginally were several proposalsfor IPv6 address assignment principles,
theaggregatableglobal unicastaddressformat [Hindenetal. 1998] is at thevergeof being
deployed. All theseschemes help to reducerouting information. In theoptimal case of a
strictly hierarchical environment, it cango down to a handful of entries.But with massive
growth of the Internettogetherwith theincreasing forcesfor connectivity to multiple ISPs
(“multi-homing”) and meshing between the ISPs,we expect the routing tables to grow.
Another new feature of IPv6, Anycastaddresses[Hindenand Deering 1998; Deering and
Hinden1998], may(depending onhow popular they will become)add avery largenumber
of hostroutesand other routeswith very long prefixes.

Somost siteswil l still have to cope with a large number of routing entries at different
prefix lengths. There is likely to be more distinct prefix lengths, so the improvements
achievedby binary searchwill be similaror betterthanthoseachievedon IPv4.

For the array accessimprovement shown in Section4.3.1, the improvement may not be
asdramatic asfor IPv4. Although it will improve performance for IPv6, after length 16
(which happensto bea“magiclength” for theaggregatableglobal unicastaddressformat),
only a smallerpercentageof the addressspacewill have beencovered. Only time will tell
whetherthis initial stepwil l beof advantage. All otheroptimizationsareexpected to yield

38 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

similar improvements.

9. CONCLUSIONS AND FUTURE WORK

We have designed a new algorithm for bestmatching search. The bestmatching prefix
problem has been around for twenty yearsin theoretical computer science; to the best
of our knowledge, the best theoretical algorithms are basedon tries. While inefficient
algorithmsbasedon hashing [Sklower1993] were known, wehavediscoveredanefficient
algorithm thatscaleswith thelogarithm of theaddresssizeand sois closeto thetheoretical
limit of ���=�,���ï�-���V(Ï� .

Our algorithm contains both intellectualand practicalcontributions. On the intellectual
side,after the basic notion of binary searching on hashtables, we found that we hadto
add markers andusepre-computation, to ensure logarithmic time in the worst-case.Algo-
rithmsthatonly usebinary search of hashtablesare unlikely to provide logarithmic time
in the worst case. Among our optimizations, we single out mutating binary treesasan
aesthetically pleasingidea that leveragesoff the extra structure inherent in our particular
form of binary search.

On thepractical side,we havea fast,scalable solution for IP lookupsthat canbe imple-
mentedin eithersoftwareor hardware, reducing thenumberof expensivememory accesses
required considerably. We expect most of the characteristicsof this addressstructure to
strengthen in the future, especially with the transition to IPv6. Even if our predictions,
based on the li ttle evidence available today, should prove to be wrong, the overall per-
formancecan easilybe restrictedto that of the basic algorithm which already performs
well.

We have alsoshown thatupdatesto our datastructure can bevery simple, with a tight
bound around the expected updateefforts. Furthermore, we have introducedcausal colli-
sionresolution which exploits domainknowledge to simplify collision resolution.

With algorithmssuchasours andthatof others,we believe thatthere is no more reason
for router throughputs to be limited by the speedof their lookup engine. We alsodo not
believe that hardware lookup enginesare required becauseour algorithm canbe imple-
mentedin softwareandstill perform well. If processorspeedsdo not keepup with these
expectations, extremelyaffordablehardware(around US$100) enablesforwarding speeds
of around 250 Gbit/s,much fasterthanany single transmittercancurrently achieveeven in
theresearchlaboratories. Therefore,we do not believe that thereis a compelling needfor
protocol changesto avoid lookupsasproposedin Tagand IP Switching. Evenif thesepro-
tocol changeswere accepted, fastlookup algorithms such asoursarelikely to be needed
at several places throughout the network.

Our algorithm hasalready beensuccessfully included into the BBN multi-gigabit per
second router[Partridgeetal. 1998], which can do the required Internetpacket processing
and forwarding decisions for

:�\rsr&rÈ u
mil lion packetsper second using a single off-the-

shelfmicroprocessor. Besides performancefor IPv6, our algorithm wasalsochosenasit
could naturall y and efficiently handle 64 bit wide prefixes(which occur while concatenat-
ing destinationand source addresseswhenforwarding IP multicastpackets).

A more challenging topic beyond prefix lookups is packet classification, wheremulti-
dimension prefix matches have to be performed, often combined with exact and range
matches.Many of the one-dimensional lookup techniques(including theone describedin
thispaper)havebeenused aslookupson individual fields,whoseresultsarethencombined
later [Gupta and McKeown 1999; Srinivasanet al. 1998]. The main ideaof this paper,

Scalable High-Speed Prefix Matching 39

namely working non-linearly in the prefix length space,hasbeen directly generalizedto
multi-dimensional packet classification schemes suchas tuple spacesearch [Srinivasan
et al. 1999] and line search [Waldvogel 2000].

We believe that trie-based and CAM-basedschemeswill continue to dominatein IPv4-
basedproducts.However, theslow, but ongoing, trend towardsIPv6 will giveastrong edge
to schemesscalable in terms of prefix lengths. Except for tables where pathcompression
is very effective9, we believe that our algorithm wil l be betterthan trie-based algorithms
for IPv6 routers. Perhaps our algorithm wasadoptedin theBBN router in anticipationof
sucha trend.

For futurework, we areattempting to fine-tunethe algorithm andarelooking for other
applications. Thus we areworking to improve the updatebehavior of the hashfunctions
evenfurther, and arestudying theeffectsof internal caching. Wearealsotrying to optimize
the building and modification processes. Our algorithm belongs to a classof algorithms
that speedup searchat theexpense of insertion; besidespacket classification, we believe
that our algorithm and its improvementsmay beapplicablein otherdomainsbesidesInter-
net packet forwarding. Potential applications we are investigating include memory man-
agement usingvariablesizepages, accessprotectionin object-orientedoperatingsystems,
and accesspermission managementfor webserversand distributed file systems.

ACKNOWLEDGMENTS

We thank V. Srinivasan, Thomas Meyer, Milin d Buddhikot, Subhash Suri, and Marcel
Dasenfor many helpful interactions, which resulted in substantialimprovements of this
paper. We arealsoextremelygrateful to have receivedextensive and useful commentsby
theanonymous reviewers.

REFERENCES

ANDERSSON, A. AND NILSSON, S. 1994. Faster searching in triesand quadtrees– an analysisof level
compression.In SecondAnnual EuropeanSymposiumonAlgorithms(1994), pp.82–93.

BRAUN, F., WALDVOGEL , M., AND LOCKWOOD, J. 2001. OBIWAN – an internet protocol router in
reconfigurable hardware. Technical ReportWU-CS-01-11(May), Washington University in St. Louis.

CHANDRANMENON, G. AND VARGHESE, G. 1995. Trading packet headers for packet processing. In
Proceedingsof SIGCOMM ’95 (Boston, Aug. 1995). Also in IEEE Transactionson Networking, April
1996.

CRESCENZI , P., DARDINI , L ., AND GROSSI , R. 1999. IP lookupsmadefastand simple. In 7th Annual
European Symposiumon Algorithms(July 1999).Alsoavailable astechnical report TR-99-01, Diparti-
mento di Informatica,Università di Pisa.

DE BERG, M., VAN KREVELD, M., AND SNOEYINK , J. 1995. Two-andthree-dimensional point location
in rectangularsubdivisions. Journal of Algorithms18, 2, 256–277.

DEERING, S. AND HINDEN, R. 1998. Internet protocol, version 6 (IPv6) specification. Internet RFC
2460.

DEGERMARK , M., BRODNIK , A., CARLSSON, S., AND PINK , S. 1997. Small forwarding tables for fast
routing lookups.In Proceedingsof ACM SIGCOMM ’97 (Sept. 1997), pp.3–14.

DEUTSCH, L . P. 1996. GZIPfile formatspecification. InternetRFC 1952.

DIETZFELBINGER, M., MEHLHORN, K ., ROHNERT, H., KARLIN, A., MEYER AUF DER HEIDE, F., AND

TARJAN, R. E. 1994. Dynamic perfect hashing: Upperand lowerbounds.SIAM Journal of Comput-
ing23, 4, 748–761.

$
For instance, theinitial IPv6 tablesmay bederivedfrom IPv4 tablesby addinga long prefix. In suchcases,path

compression will beveryeffective.

40 M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

EATHERTON, W. N. 1999. Hardware-based Internet protocol prefix lookups.Master’sthesis,Washington
University in St.Louis, St.Louis, MO, USA.

FELDMEIER, D. C. 1988. Improving gateway performancewith a routing-tablecache.In Proceedingsof
IEEE Infocom’88 (New Orleans,March1988),pp. 298–307.

FREDMAN, M. L., KOMLÓS, J., AND SZEMERÉDI , E. 1984. Storingasparsetablewith %�&�'#(worstcase
accesstime. Journalof theACM 31, 3, 538–544.

FULLER, V., L I , T., YU, J., AND VARADHAN, K. 1993. ClasslessInter-DomainRouting (CIDR): an
addressassignmentandaggregationstrategy. InternetRFC 1519.

GUPTA , P., L IN, S., AND MCKEOWN, N. 1998. Routing lookupsin hardwareat memory accessspeeds.
In Proceedingsof IEEE Infocom(April 1998), pp.1240–1247.

GUPTA , P. AND MCKEOWN, N. 1999. Packetclassification on multiple fields. In Proceedingsof ACM
SIGCOMM’99 (Cambridge,Massachusetts, USA, Sept. 1999), pp. 147–160.

GWEHENBERGER, G. 1968. Anwendung einer binärenVerweiskettenmethodebeim Aufbau von Listen
(Useof abinary treestructure for processing files).ElektronischeRechenanlagen10, 223–226.

HINDEN, R. AND DEERING, S. 1998. IP version6 addressing architecture. InternetRFC2373.

HINDEN, R., O’ DELL , M., AND DEERING, S. 1998. An IPv6 aggregatable globalunicastaddressfor-
mat. InternetRFC 2374.

KNUTH, D. E. 1998. Sorting and Searching (2nd ed.), Volume 3 of TheArt of Computer Programming.
Addison-Wesley.

KOBAYASHI , M., MURASE, T., AND KURIYAMA , A . 2000. A longestprefix match search engine for
multi-gigabit ip processing. In Proceedings of the International Conferenceon Communications (June
2000).

LABOVITZ, C., MALAN, G. R., AND JAHANIAN, F. 1997. Internet routing instabili ty. In Proceedingsof
ACM SIGCOMM ’97 (1997), pp.115–126.

LAMPSON, B., SRINIVASAN, V., AND VARGHESE, G. 1998. IP lookupsusing multiway andmulticol-
umnsearch. In Proceedingsof IEEE Infocom’98 (SanFrancisco, 1998).

MCAULEY, A. J. AND FRANCIS, P. 1993. Fast routing table lookup using CAMs. In Proceedingsof
Infocom’93 (March–April 1993),pp. 1382–1391.

MORRISON, D. R. 1968. PATRICIA—practical algorithmto retrieveinformation codedin alphanumeric.
Journal of theACM 15, 514–534.

NEWMAN, P., M INSHALL, G., AND HUSTON, L . 1997. IP Switching andgigabit routers.IEEECommu-
nicationsMagazine35, 1 (Jan.),64–69.

NILSSON, S. AND KARLSSON, G. 1999. Ip addresslookup using LC-tries.IEEE Journal on Selected
Areasin Communications15, 4 (June), 1083–1092.

PARTRIDGE, C. 1996. Locality and route caches. In NSF Workshop on Internet Statistics Measure-
ment and Analysis (San Diego,CA, USA, Feb. 1996). Available at http://www.caida.org/outreach/9602/
positions/partridge.html.

PARTRIDGE, C., CARVEY, P. P., ET AL . 1998. A 50-gb/sIP router. IEEE/ACM TransactionsonNetwork-
ing6, 3 (June), 237–248.

PERLMAN, R. 1992. Interconnections: Bridgesand Routers. Addison-Wesley.

REKHTER, Y., DAVIE, B., KATZ, D., ROSEN, E., AND SWALLOW, G. 1997. Ciscosystems’ tag switch-
ingarchitectureoverview. InternetRFC 2105.

REKHTER, Y. AND L I , T. 1995. A border gatewayprotocol 4 (BGP-4).Internet RFC1771.

ROSEN, E. C., V ISWANATHAN, A., AND CALLON, R. 2001. Multiprotocol label switching architecture.
InternetRFC 3031.

RUIZ-SÁNCHEZ, M. A., BIERSACK , E. W., AND DABBOUS, W. 2001. Survey and taxonomy of ip
addresslookupalgorithms. IEEE Network 15, 2 (March–April), 8–23.

SHAH, D. AND GUPTA , P. 2000. Fastincremental updateson ternary-camsfor routinglookupsandpacket
classification. In Proceedingsof Hot Interconnects (2000).

SKLOWER, K . 1993. A tree-basedpacket routing tablefor Berkeley Unix. Technical report, University of
California, Berkeley. Also athttp://www.cs.berkeley.edu/̃ sklower/routing.ps.

SPINNEY, B. A. 1995. Addresslookup in packetdata communications link, using hashing andcontent-
addressablememory. U.S.Patentnumber 5,414,704.AssigneeDigital Equipment Corporation,Maynard,

Scalable High-Speed Prefix Matching 41

MA.
SRINIVASAN, V., SURI , S., AND VARGHESE, G. 1999. Packet classification usingtuplespacesearch. In

Proceedingsof ACM SIGCOMM ’99 (Cambridge,Massachusetts,USA, Sept. 1999), pp.135–146.
SRINIVASAN, V. AND VARGHESE, G. 1999. Fast address lookups using controlled prefix expansion.

TransactionsonComputer Systems17, 1 (Feb.), 1–40.
SRINIVASAN, V., VARGHESE, G., SURI , S., AND WALDVOGEL, M. 1998. Fastand scalable layer four

switching. In Proceedingsof ACM SIGCOMM’98 (Sept. 1998), pp.191–202.
VAN EMDE BOAS, P. 1975. Preserving order in a forest in lessthanlogarithmic time. In Proceedingsof

the16th AnnualSymposiumon Foundationsof Computer Science (1975), pp. 75–84.
VAN EMDE BOAS, P., KAAS, R., AND ZULSTRA , E. 1977. Designand implementation of anefficient

priority queue. Mathematical SystemsTheory10, 99–127.
WALDVOGEL, M. 2000. Multi-dimensional prefix matching usingline search. In Proceedings of IEEE

Local Computer Networks (Nov. 2000),pp.200–207.
WALDVOGEL, M., VARGHESE, G., TURNER, J., AND PLATTNER, B. 1997. Scalable high speed IP

routing table lookups.In Proceedingsof ACM SIGCOMM ’97 (Sept. 1997),pp.25–36.

